Ratio and proportion AMC 8, 2010 Problem 2

Join Trial or Access Free Resources
[et_pb_section fb_built="1" _builder_version="4.2.2"][et_pb_row _builder_version="3.25"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="4.2.2" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Aclonica|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

What are we learning ?

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]

Competency in Focus: Ratio and proportion.

This problem from American Mathematics contest (AMC 8, 2010) is based on the concept of ratio and proportion and binary composition .

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Aclonica|300|||||||" text_text_color="#ffffff" header_font="Aclonica|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

First look at the knowledge graph.

[/et_pb_text][et_pb_image src="https://cheenta.com/wp-content/uploads/2020/02/amc8-2010-2.png" align="center" force_fullwidth="on" _builder_version="4.2.2" min_height="388px" height="198px" max_height="207px"][/et_pb_image][et_pb_text _builder_version="4.2.2" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" header_2_font="Aclonica||||||||" background_color="#0c71c3" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Next understand the problem

[/et_pb_text][et_pb_text _builder_version="4.2.2" text_font="Raleway||||||||" text_font_size="20px" text_letter_spacing="1px" text_line_height="1.5em" background_color="#f4f4f4" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" box_shadow_style="preset2"]If $a @ b = \frac{a\times b}{a+b}$ for $a,b$ positive integers, then what is $5 @10$? $\textbf{(A)}\ \frac{3}{10} \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 2 \qquad\textbf{(D)}\ \frac{10}{3} \qquad\textbf{(E)}\ 50$[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="4.2.2" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px"][et_pb_accordion_item title="Source of the problem" _builder_version="4.2.2" open="on"]American Mathematical Contest 2010, AMC 8  Problem 2[/et_pb_accordion_item][et_pb_accordion_item title="Key Competency" open="off" _builder_version="4.2.2"]

Ratio and Proportion

[/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="4.2.2" open="off"]2/10[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="4.2.2" open="off"]

Mathematical Circles (Russian Experience)[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="4.0.9" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|0px|20px||" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]

Start with hints 

[/et_pb_text][et_pb_tabs _builder_version="4.2.2"][et_pb_tab title="HINT 0" _builder_version="4.0.9"]Do you really need a hint? Try it first![/et_pb_tab][et_pb_tab title="HINT 1" _builder_version="4.2.2"]Take a look at the knowledge graph first[/et_pb_tab][et_pb_tab title="HINT 2" _builder_version="4.2.2"]Substitute $a \textbf{ by } 5 \textbf{ and } b \text{ by } 10$   [/et_pb_tab][et_pb_tab title="HINT 3" _builder_version="4.2.2"]$5@10=\frac{5\times10}{5+10}=\frac{50}{15}=\frac{10}{3}$[/et_pb_tab][/et_pb_tabs][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" fullwidth="on" _builder_version="4.2.2" global_module="50833"][et_pb_fullwidth_header title="AMC - AIME Program" button_one_text="Learn More" button_one_url="https://cheenta.com/amc-aime-usamo-math-olympiad-program/" header_image_url="https://cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="4.2.2" title_level="h2" background_color="#00457a" custom_button_one="on" button_one_text_color="#44580e" button_one_bg_color="#ffffff" button_one_border_color="#ffffff" button_one_border_radius="5px"]

AMC - AIME - USAMO Boot Camp for brilliant students. Use our exclusive one-on-one plus group class system to prepare for Math Olympiad

[/et_pb_fullwidth_header][/et_pb_section][et_pb_section fb_built="1" fullwidth="on" _builder_version="4.2.2" global_module="50840"][et_pb_fullwidth_post_slider include_categories="879,878,869" show_arrows="off" show_pagination="off" show_meta="off" image_placement="left" _builder_version="4.2.2" custom_button="on" button_text_color="#0c71c3" button_bg_color="#ffffff" custom_margin="20px||20px||false|false" custom_padding="20px||20px||false|false"][/et_pb_fullwidth_post_slider][/et_pb_section]
More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram