Problem on HCF | SMO, 2013 | Problem 35

Join Trial or Access Free Resources

Try this beautiful problem from Singapore Mathematics Olympiad, SMO, 2013 based on HCF.

Problem on HCF | SMO, 2013 | Problem 35

What is the smallest positive integer n,where \( n \neq 11\) such that the highest common factor of n-11 and 3n +20 is greater than 1?

  • 62
  • 65
  • 66
  • 60

Key Concepts


HCF and GCD

Number Theory

Check the Answer


Answer: 64

Singapore Mathematics Olympiad

Challenges and Thrills - Pre - College Mathematics

Try with Hints


If you got stuck in this sum we can start from here:

Let d is the highest common factor of n-11 and 3n +20 which is greater than 1.

So d|(n-11) and d|(3n + 20) .

If we compile this two then d|(3n +20 -3(n-11) when d|53 .

Now one thing is clear that 53 is a prime number and also d >1

so we can consider d = 53.

Now try the rest..................

Now from the previous hint

n-11 = 53 k (let kis the +ve integer)

n = 53 k +11

So for any k 3n +20 is a multiple of 53.

so 3n + 20 = 3(53k +11) +20 = 53(3k+1)

Finish the rest...........

Here is the final solution :

After the last hint :

n = 64 (if k = 1) which is the smallest integer. as hcf of (n - 11,3n +20)>1(answer)

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram