Finding Greatest Integer | AMC 10A, 2018 | Problem No 14

Join Trial or Access Free Resources

Try this beautiful Problem on Algebra based on finding greatest integer from AMC 10 A, 2018. You may use sequential hints to solve the problem.

Finding Greatest Integer - AMC-10A, 2018- Problem 14


What is the greatest integer less than or equal to $\frac{3^{100}+2^{100}}{3^{96}+2^{96}} ?$

  • $80$
  • $81$
  • $96$
  • $97$
  • $625$

Key Concepts


Algebra

greatest integer

Suggested Book | Source | Answer


Suggested Reading

Pre College Mathematics

Source of the problem

AMC-10A, 2018 Problem-14

Check the answer here, but try the problem first

$80$

Try with Hints


First Hint

The given expression is $\frac{3^{100}+2^{100}}{3^{96}+2^{96}} ?$

We have to find out the greatest integer which is less than or equal to the given expression .

Let us assaume that $x=3^{96}$ and $y=2^{96}$

Therefore the given expression becoms $\frac{81 x+16 y}{x+y}$

Now can you finish the problem?

Second Hint

Now $\frac{81 x+16 y}{x+y}$

=$\frac{16 x+16 y}{x+y}+\frac{65 x}{x+y}$

$=16+\frac{65 x}{x+y}$

Now if we look very carefully we see that $\frac{65 x}{x+y}<\frac{65 x}{x}=65$

Therefore $16+\frac{65 x}{x+y}<16+65=81$

Now Can you finish the Problem?

Third Hint

Therefore less than \(81\) , the answer will be \(80\)

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

One comment on “Finding Greatest Integer | AMC 10A, 2018 | Problem No 14”

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram