India has some great colleges and universities for mathematics and statistics. This document has a compilation of top 50 departments in India based on research, seminars, faculty strength and reputation.
India has some great colleges and universities for mathematics and statistics. This document has a compilation of top 50 departments in India based on research, seminars, faculty strength and reputation.
IIT Kanpur is starting admission through real Math Olympiad (IOQM, RMO, INMO). Other departments may join.
Top 20 mathematics programs in India at the college (undergraduate) level after high school in 2024.
India has some great colleges and universities for mathematics and statistics. This document has a compilation of top 50 departments in India based on research, seminars, faculty strength and reputation.
Top 20 mathematics programs in India at the college (undergraduate) level after high school in 2024.
Career options in Mathematics, how to plan a successful academic, research or industry focussed career in school and college.
Cheenta has been working with thousands of school and college students since 2010. We have deviced a unique method of teaching non-routine mathematics, physics and computer science over the last 14 years. In this article we will discuss the main features of the Cheenta method. Two Pronged Approach A Cheenta program usually consists of two […]
Explore the world of Math Olympiads and discover how to differentiate between Fake and Real Olympiads. We share valuable insights on the path to Olympiad success, emphasizing the importance of consistency and reputable organizers.
We discuss how to appreciate the beauty of mathematics and how to communicate the same to children using experiments and pattern recognition.
Imagine sharpening your sword with a whetstone. The job of the stone is to sharpen the sword. It does not matter what color the stone is. Cheenta programs are designed like whetstones. They are supposed to sharpen the creativity and problem solving skills through a slow but sure process. They involve thousands of thought provoking […]
Tools for middle school children and their parents. How to help kids fall in love with mathematical science and prepare them for math and sciecnce olympiads, ISI, CMI Entrances and other contests in the long run?
Junior Data Science Olympiad is suitable for students of grade 9 and above, interested in Data Science. Check out the resources for the Junior Data Science Olympiad in this post. Curriculum Algebra Trigonometry Coordinate Geometry Combinatorics Data Visualization Algebra AM, GM, and Cauchy Schwarz Inequality Rational Root Theorem, Remainder Theorem Roots of a polynomial Trigonometry […]
Mahalanobis Olympiad is suitable for College and University Students, interested in Statistics and Mathematics. Check out the resources for the Mahalanobis Olympiad in this post. Curriculum High School Mathematics Calculus and Linear Algebra Probability Statistics High School Mathematics Coordinate Geometry Trigonometry Complex Numbers Permutation and Combinatorics Calculus and Linear Algebra Pre Calculus One Variable Calculus […]
Books play a significant role in the preparation for the Singapore Mathematics Olympiad. In Cheenta we recommend a few books based on their age and grades that suit them. Books for Preliminary AMC Books for Advanced AMC
Titu Andreescu and Zuming Feng have given us a beautiful book about combinatorial problems which help students in olympiad preparation.
Explore this beautiful book on problems useful for Math Olympiad, ISI CMI Entrance. It is written by three Russian authors. Title: Selected Problems and Theorems in Elementary Mathematics – Shklyarsky, Chentsov, Yaglom
Problem 1 Andy and Betsy both live in Mathville. Andy leaves Mathville on his bicycle at $1: 30$, traveling due north at a steady 8 miles per hour. Betsy leaves on her bicycle from the same point at $2: 30$, traveling due east at a steady 12 miles per hour. At what time will they […]
Get the official AMC 8 - 2003 paper with all questions. This exam from the Mathematical Association of America helps young students practice analytical thinking and prepare effectively for upcoming competitions.
The AMC 8 - 2002 paper is a middle-school level mathematics contest featuring engaging problems that test logical reasoning, number sense, and problem-solving skills. This paper is ideal for students preparing for Math Oympiads and competitive exams.
Problem 1 At Euclid High School, the mathematics teachers are Mrs. Germain, Mr. Newton, and Mrs. Young. There are 11 students in Mrs. Germain's class, 8 in Mr. Newton, and 9 in Mrs. Young's class are taking the AMC 8 this year. How many mathematics students at Euclid High School are taking the contest?(A) 26(B) […]
Practise the AMC 8 2005 paper to sharpen your core math skills and contest thinking. This set of problems covers key topics like arithmetic, algebra, geometry, counting, and logical reasoning — perfect for Grades 6–8 students aiming for AMC 8 and other olympiad-style exams.
Access the complete AMC 8 - 2001 paper with carefully arranged questions for practice. Ideal for students in Grades 6–8 preparing for AMC 8, math olympiads, and competitive problem-solving.
The AMC 8 2025 past paper is a perfect benchmark for serious preparation. Use this latest official paper to understand the current difficulty level, identify important topic patterns, and practise solving questions efficiently under timed conditions.
The AMC 8 2021 past paper is one of the best practice resources for students aiming to excel in competitive mathematics. Use this official question paper to train your reasoning skills, learn smart shortcuts, and develop the speed needed for Olympiad-style exams like AMC 8.
Practice the official AMC 8 2021 past paper to build strong foundations in competitive Mathematics. This post provides the complete question paper PDF to help students improve problem-solving speed, accuracy, and reasoning for AMC 8 and Olympiad preparation.
Problem 1 Danica wants to arrange her model cars in rows with exactly 6 cars in each row. She now has 23 model cars. What is the smallest number of additional cars she must buy in order to be able to arrange her cars in this way?(A) 1(B) 2(C) 3(D) 4(E) 5 Answer : (A) […]
Problem 1 What is the value of $\frac{(2112-2021)^{2}}{169}$ ?(A) 7(B) 21(C) 49(D) 64(E) 91 Answer: (C) 49 Problem 2 Menkara has a $4 \times 6$ index card. If she shortens the length of one side of this card by 1 inch, the card would have area 18 square inches. What would the area of the […]
The AMC 8 (2005) is a 40-minute, 25-question multiple-choice contest for middle-school students (Grade 8 and below).
It tests problem-solving in arithmetic, algebra, geometry, counting, and probability (not complex calculus).
Problem 1 Andy and Betsy both live in Mathville. Andy leaves Mathville on his bicycle at $1: 30$, traveling due north at a steady 8 miles per hour. Betsy leaves on her bicycle from the same point at $2: 30$, traveling due east at a steady 12 miles per hour. At what time will they […]
Problem 1 What is the ones digit of $$222,222-22,222-2,222-222-22-2 ?$$ (A) 0(B) 2(C) 4(D) 6(E) 8 Answer: (B) 2 Problem 2 What is the value of this expression in decimal form? $$\frac{44}{11}+\frac{110}{44}+\frac{44}{1100}$$ (A) 6.4(B) 6.504(C) 6.54(D) 6.9(E) 6.94 Answer: (C) 6.54 Problem 3 Four squares of side length $4,7,9$, and 10 units are arranged in […]
AMC 8 2004 is a classic middle-school math contest featuring 25 engaging problems in algebra, geometry, counting, probability, and logical reasoning. It tests speed, accuracy, and smart problem-solving strategies in a fun competitive format.
Problem 1Theresa's parents have agreed to buy her tickets to see her favorite band if she spends an average of 10 hours per week helping around the house for 6 weeks. For the first 5 weeks, she helps around the house for $8,11,7,12$ and 10 hours. How many hours must she work during the final […]
Get the official AMC 8 - 2003 paper with all questions. This exam from the Mathematical Association of America helps young students practice analytical thinking and prepare effectively for upcoming competitions.
The AMC 8 - 2002 paper is a middle-school level mathematics contest featuring engaging problems that test logical reasoning, number sense, and problem-solving skills. This paper is ideal for students preparing for Math Oympiads and competitive exams.
Problem 1 At Euclid High School, the mathematics teachers are Mrs. Germain, Mr. Newton, and Mrs. Young. There are 11 students in Mrs. Germain's class, 8 in Mr. Newton, and 9 in Mrs. Young's class are taking the AMC 8 this year. How many mathematics students at Euclid High School are taking the contest?(A) 26(B) […]
Problem 1 Mindy made three purchases for $\$ 1.98, \$ 5.04$ and $\$ 9.89$. What was her total, to the nearest dollar?(A) $\$ 10$(B) $\$ 15$(C) $\$ 16$(D) $\$ 17$(E) $\$ 18$ Answer: (D) $\$ 17$ Problem 2 On the AMC 8 contest Billy answers 13 questions correctly, answers 7 questions incorrectly and doesn't answer […]
সমাকলন অথবা ইন্টিগ্রেশনের মানেটুকু বুঝলে আই-এস-আই প্রবেশিকার এই অঙ্কটা করা যাবে। ISI Entrance 2025-এর অঙ্ক নিয়ে আলোচনা।
(২১-শে ফেব্রুয়ারীর প্রতি) ‘মাত্রা’ অথবা ডাইমেনশন কাকে বলে? একটু তলিয়ে ভাবতে গেলে কিন্তু সব গোলমাল হয়ে যায়। এই এক টুকরো লেখায়, আমরা ডাইমেনশন নিয়ে একটু ভাবা প্র্যাকটিস করব। একটা বিন্দু-র dimension কি? একটা সরলরেখারই বা dimension কি? একটা কাগজের টুকরোর dimension কি হবে? চট করে ভাবলে মনে হয় যে কিন্তু কেন এরকম মনে হচ্ছে? তুমি […]
Direct Limit, Inverse Limit, and Hom are three ideas from category theory that are useful in many branches of mathematics. A deep understanding of them can be very helpful in the long run. In the following video, we draw schematic pictures and gain real intuition behind these abstract ideas. This is clearly one of the most important videos of our production.
হাইপারবোলিক জ্যামিতির জগৎটা একদমই অন্যরকম। এখানে ইউক্লিড খুঁড়িয়ে খুঁড়িয়ে হাঁটেন। এখানে সমান্তরাল রেখা মিশে যায়। এখানে সরলরেখা দেখায় আঁকা বাঁকা।
আন্তর্জাতিক মাতৃভাষা দিবস উপলক্ষে চিন্তা গণিত কেন্দ্রের একটি প্রয়াস হল বিস্মৃতপ্রায় তিন বাঙালি গণিতজ্ঞ ।এই লেখাতে তিনজন বাঙালি গণিতজ্ঞকে শ্রদ্ধাজ্ঞাপন করেছি
যুক্তিকে বড়ো কাঠখোট্টা ভদ্রলোকের মত মনে হয়। কল্পনা তার বিপ্রতীপে দাঁড়িয়ে থাকা এক অস্থির মতি বালিকা। সে যেন রেবা নদীর তীরে ছুটোছুটি করে খেলছে। আর যুক্তি তাকে বকাবকি করছে। শাসনে রাখতে চাইছে।
অথচ ব্যাপারটা হয়ত একটু অন্যরকম। হয়ত কল্পনা এক বৃত্তে ছুটে চলেছে। যুক্তি সেখানে এক দরবেশের মত এসে হাজির। সে তাকে নতুন পথ দেখিয়ে নিয়ে যাবে আরও উন্মুক্ত অস্থিরতায়। আর আমরা যারা পড়ুয়া তারা মালবিকার মত অনিমিখে তাকিয়ে থাকব পথের দিকে। কে জানে অগ্নিমিত্র আসবেন কিনা!
প্রাথমিক শিক্ষার্থীদের অন্যরকম অঙ্কের স্বাদ দেওয়ার জন্য দশকথা সিরিজ করা হয়েছে। আজ দশকথার চতুর্থ কথা।আমরা অসমীকরণ ব্যাপারটি বলব ।
বাংলা মাধ্যমের প্রাথমিক শিক্ষার্থীদের একটু অন্যভাবে বা অন্যরকম অঙ্কের স্বাদ দেওয়ার জন্য দশটি লেখার একটি সিরিজ তৈরি করা হয়েছে । যার নাম দশকথা । আজ দশকথার তৃতীয় কথা। এই লেখাতে আমরা বহুভুজের ব্যাপারটি বলব |
বাংলা মাধ্যমের প্রাথমিক শিক্ষার্থীদের একটু অন্যভাবে বা অন্যরকম অঙ্কের স্বাদ দেওয়ার জন্য দশটি লেখার একটি সিরিজ তৈরি করা হয়েছে । যার নাম দশকথা । আজ দশকথার প্রথম কথা। এই লেখাতে আমরা দর্পণ প্রতিসাম্যতা ব্যাপারটি বলব । আপনাদের মন্তব্য-প্রতিমন্তব্য চিন্তা গণিত কেন্দ্রের এই উদ্যোগকে এগিয়ে নিয়ে যেতে সাহায্য করবে ।