ISI MStat PSB 2012 Problem 2 | Dealing with Polynomials using Calculus

Join Trial or Access Free Resources

This is a very beautiful sample problem from ISI MStat PSB 2012 Problem 2 based on calculus . Let's give it a try !!

Problem- ISI MStat PSB 2012 Problem 2


Let \(f\) be a polynomial. Assume that \( f(0)=1, \lim _{x \rightarrow \infty} f''(x)=4\) and \( f(x) \geq f(1) \) for all \( x \in \mathbb{R} .\) Find \( f(2)\) .

Prerequisites


Limit

Derivative

Polynomials

Solution :

Here given \(f(x) \) is a polynomial and \( \lim _{x \rightarrow \infty} f''(x)=4\)

So, Case 1: If f(x) is a polynomial of degree 1 then f''(x)=0 hence limit can't be 4.

Case 2: If f(x) is a polynomial of degree 2 ,say \( f(x) = ax^2+bx+c \) then \( f''(x)= 2a \) .Hence taking limit we get \( 2a=4 \Rightarrow a=2 \)

Case 3: If f(x) is a polynomial of degree >2 then \( f''(x) = O(x) \) . So, it tends to infinity or - infinity as x tends to infinity .

Therefore the only case that satisfies the condition is Case 2 .

So , f(x) = \( 2x^2+bx+c \) ,say . Now given that \( f(0)=1 \Rightarrow c=1 \) .

Again , it is given that \( f(x) \geq f(1) \) for all \( x \in \mathbb{R} \) which implies that f(x) has minimum at x=1 .

That is f'(x)=0 at x=1 . Here we have \( f'(x)=4x+b=0 \Rightarrow x=\frac{-b}{4}=1 \Rightarrow b=-4 \)

Thus we get \( f(x)=2x^2-4x+1 \) . Putting x=2 , we get \( f(2)=1 \) .


Food For Thought

Assume f is differentiable on \( (a, b)\) and is continuous on \( [a, b]\) with \( f(a)=f(b)=0\). Prove that for every real \( \lambda\) there is some c in \( (a, b)\) such that \( f'(c)=\lambda f(c) \).


Similar Problems and Solutions



ISI MStat PSB 2008 Problem 10
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram