Cauchy Schwarz Problem: Let be a polynomial with non-negative coefficients.Prove that if for ,then the same inequality holds for each . Discussion: Cauchy Schwarz's Inequality: Suppose for real numbers (\ a_{i},b_{i}), where (\ i\in{1,2,\dots,n}) we can say that $${\sum_{i=1}^{n}a_{i}^2}{\sum_{i=1}^{n}b_{i}^2}=\sum_{i=1}^{n}{a_{i}b_{i}}^2$$. Titu's Lemma: Let (\ a_{i},b_{i}\in{\mathbb{R}}) and let (\ a_{i},b_{i}>0) for (\ i\in{1,2,\dots,n}) $$\sum_{i=1}^{n}\frac{a_{i}^2}{b_{i}}\ge\frac{{\sum_{i=1}^{n}a_{i}}^2}{\sum_{i=1}^{n}b_{i}}$$ Proof of Cauchy Schwarz's Inequality: We […]