Euler limit | Problem based on Euler's number

Join Trial or Access Free Resources
[et_pb_section fb_built="1" admin_label="Blog Hero" _builder_version="3.22" use_background_color_gradient="on" background_color_gradient_start="rgba(114,114,255,0.24)" background_color_gradient_end="#ffffff" background_blend="multiply" custom_padding="0|0px|0|0px|false|false" animation_style="slide" animation_direction="top" animation_intensity_slide="2%" locked="off"][et_pb_row _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat" custom_margin="|||" custom_padding="27px|0px|27px|0px" custom_width_px="1280px"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_text_color="#474ab6" text_line_height="1.9em" background_size="initial" background_position="top_left" background_repeat="repeat" text_orientation="center" max_width="540px" module_alignment="center" locked="off"]Let \( \{a_n\}_{n\ge 1} \) be a sequence of real numbers such that $$ a_n = \frac{1 + 2 + ... + (2n-1)}{n!} , n \ge 1 $$ . Then \( \sum_{n \ge 1 } a_n \) converges to ____________ [/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" admin_label="Blog" _builder_version="3.22" custom_margin="|||" custom_padding="0px|0px|21px|0px|false|false"][et_pb_row _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat" max_width="960px" custom_padding="0|0px|24px|0px|false|false" use_custom_width="on" custom_width_px="960px"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_tabs _builder_version="3.12.2"][et_pb_tab title="Hint 1 - Sum of odds" _builder_version="3.12.2"]Notice that \( 1 + 3 + 5 + ... + (2n-1) = n^2 \). A quick way to remember this is sum of first n odd numbers is \( n^2 \) Hence \( a_n = \frac{n^2}{n!} \) Simplifying this a little we have \( a_n = \frac {n}{(n-1)!} \) [/et_pb_tab][et_pb_tab title="Hint 2 - Break in partials" _builder_version="3.12.2"]Notice that n = n-1 +1 Then \( a_n = \frac { n-1}{(n-1)!} + \frac {1}{ (n-1)!} = \frac { 1}{(n-2)!} + \frac {1}{ (n-1)!} \) We are interested in the limit of the partial sums of \(a_n \) [/et_pb_tab][et_pb_tab title="Hint 3 - Something goes to e!" _builder_version="3.12.2"]Recall the \( \sum \frac {1}{n!} \) converges to the Euler number e. (Do not know this? Look up the definition of e in the internet). Here we have two copies of this series if we sum \( a_n \). (Since we are taking limit of a sum, (n-1) and (n-2) does not matter). Hence the limit of this sum is 2e, [/et_pb_tab][/et_pb_tabs][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section fb_built="1" admin_label="Footer" _builder_version="3.22" background_color="#f7f8fc" custom_padding="0px|0px|2px|0px|false|false" animation_style="zoom" animation_direction="bottom" animation_intensity_zoom="6%" animation_starting_opacity="100%" saved_tabs="all"][et_pb_row use_custom_gutter="on" gutter_width="2" _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat" custom_padding="24px|0px|145px|0px|false|false" column_structure="1_2,1_4,1_4"][et_pb_column type="1_2" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_text _builder_version="3.27.4" text_text_color="#7272ff" header_font="|on|||" header_text_color="#7272ff" header_font_size="36px" header_line_height="1.5em" background_size="initial" background_position="top_left" background_repeat="repeat" custom_margin="||20px|" animation_style="slide" animation_direction="bottom" animation_intensity_slide="10%" inline_fonts="Aclonica"]

Get Started with I.S.I. Entrance Program

[/et_pb_text][et_pb_text _builder_version="3.27.4" text_text_color="#8585bd" text_font_size="22px" text_line_height="1.9em" background_size="initial" background_position="top_left" background_repeat="repeat" animation_style="fade" locked="off"]Outstanding mathematics for brilliant school students. [/et_pb_text][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_button button_url="https://cheenta.com/isicmientrance/" url_new_window="on" button_text="Learn More" button_alignment="left" _builder_version="3.16" custom_button="on" button_text_size="16px" button_text_color="#ffffff" button_bg_color="#7272ff" button_border_width="10px" button_border_color="#7272ff" button_border_radius="100px" button_letter_spacing="1px" button_font="|on||on|" button_icon="%%36%%" button_on_hover="off" custom_margin="|||" animation_style="zoom" animation_delay="100ms" animation_intensity_zoom="6%" box_shadow_style="preset1" box_shadow_vertical="10px" box_shadow_blur="50px" box_shadow_spread="5px" box_shadow_color="rgba(114,114,255,0.4)" button_letter_spacing_hover="2px" locked="off" button_text_size__hover_enabled="off" button_one_text_size__hover_enabled="off" button_two_text_size__hover_enabled="off" button_text_color__hover_enabled="off" button_one_text_color__hover_enabled="off" button_two_text_color__hover_enabled="off" button_border_width__hover_enabled="off" button_one_border_width__hover_enabled="off" button_two_border_width__hover_enabled="off" button_border_color__hover_enabled="off" button_one_border_color__hover_enabled="off" button_two_border_color__hover_enabled="off" button_border_radius__hover_enabled="off" button_one_border_radius__hover_enabled="off" button_two_border_radius__hover_enabled="off" button_letter_spacing__hover_enabled="on" button_letter_spacing__hover="2px" button_one_letter_spacing__hover_enabled="off" button_two_letter_spacing__hover_enabled="off" button_bg_color__hover_enabled="off" button_one_bg_color__hover_enabled="off" button_two_bg_color__hover_enabled="off"][/et_pb_button][/et_pb_column][et_pb_column type="1_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_button button_url="https://cheenta.com/contact-us/" url_new_window="on" button_text="Apply for admission" button_alignment="left" _builder_version="3.16" custom_button="on" button_text_size="16px" button_text_color="#7272ff" button_bg_color="#ffffff" button_border_width="10px" button_border_color="#ffffff" button_border_radius="100px" button_letter_spacing="1px" button_font="|on||on|" button_icon="%%36%%" button_on_hover="off" custom_margin="|||" animation_style="zoom" animation_intensity_zoom="6%" box_shadow_style="preset1" box_shadow_vertical="10px" box_shadow_blur="50px" box_shadow_spread="5px" box_shadow_color="rgba(181,181,255,0.38)" button_letter_spacing_hover="2px" locked="off" button_text_size__hover_enabled="off" button_one_text_size__hover_enabled="off" button_two_text_size__hover_enabled="off" button_text_color__hover_enabled="off" button_one_text_color__hover_enabled="off" button_two_text_color__hover_enabled="off" button_border_width__hover_enabled="off" button_one_border_width__hover_enabled="off" button_two_border_width__hover_enabled="off" button_border_color__hover_enabled="off" button_one_border_color__hover_enabled="off" button_two_border_color__hover_enabled="off" button_border_radius__hover_enabled="off" button_one_border_radius__hover_enabled="off" button_two_border_radius__hover_enabled="off" button_letter_spacing__hover_enabled="on" button_letter_spacing__hover="2px" button_one_letter_spacing__hover_enabled="off" button_two_letter_spacing__hover_enabled="off" button_bg_color__hover_enabled="off" button_one_bg_color__hover_enabled="off" button_two_bg_color__hover_enabled="off"][/et_pb_button][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" background_size="initial" background_position="top_left" background_repeat="repeat" custom_padding="0px|0px|100px|0px" column_structure="1_2,1_2"][et_pb_column type="1_2" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="I.S.I. & C.M.I Entrance Problems" url="https://cheenta.com/i-s-i-entrance-problems/" url_new_window="on" image="https://cheenta.com/wp-content/uploads/2018/08/coding-icon_2-1.jpg" icon_placement="left" image_max_width="64px" content_max_width="1100px" _builder_version="3.12.2" header_font="|on|||" header_text_color="#7272ff" header_line_height="1.5em" body_text_color="#8585bd" body_line_height="1.9em" background_color="#ffffff" custom_margin="-80px|||" custom_padding="30px|40px|30px|40px" animation_style="zoom" animation_direction="bottom" animation_intensity_zoom="20%" animation_starting_opacity="100%" box_shadow_style="preset2" box_shadow_horizontal="0px" box_shadow_vertical="0px" box_shadow_blur="60px" box_shadow_color="rgba(71,74,182,0.12)" locked="off"]B.Stat and B.Math Entrance, C.M.I. Entrance problems, discussions and other resources. Go Back [/et_pb_blurb][/et_pb_column][et_pb_column type="1_2" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||"][et_pb_blurb title="Problem Garden" url="#" image="https://cheenta.com/wp-content/uploads/2018/08/coding-icon_8-1.jpg" icon_placement="left" image_max_width="64px" content_max_width="1100px" _builder_version="3.12.2" header_font="|on|||" header_text_color="#7272ff" header_line_height="1.5em" body_text_color="#8585bd" body_line_height="1.9em" background_color="#ffffff" custom_margin="-80px|||" custom_margin_tablet="0px|||" custom_margin_phone="" custom_margin_last_edited="on|phone" custom_padding="30px|40px|30px|40px" animation_style="zoom" animation_direction="bottom" animation_delay="100ms" animation_intensity_zoom="20%" animation_starting_opacity="100%" box_shadow_style="preset2" box_shadow_horizontal="0px" box_shadow_vertical="0px" box_shadow_blur="60px" box_shadow_color="rgba(71,74,182,0.12)" locked="off"]Work with great problems from Mathematics Olympiads, Physics, Computer Science, Chemistry Olympiads and I.S.I. C.M.I. Entrance. Click Here [/et_pb_blurb][/et_pb_column][/et_pb_row][/et_pb_section]
More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram