Argentina TST 2005

Join Trial or Access Free Resources
[et_pb_section fb_built="1" _builder_version="3.22.4" fb_built="1" _i="0" _address="0"][et_pb_row _builder_version="3.25" _i="0" _address="0.0"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.0.0"][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_padding="20px|20px|20px|20px" _i="0" _address="0.0.0.0"]

Understand the problem

[/et_pb_text][et_pb_text _builder_version="3.22.4" text_font="Raleway||||||||" background_color="#f4f4f4" box_shadow_style="preset2" custom_margin="10px||10px" custom_padding="10px|20px|10px|20px" _i="1" _address="0.0.0.1"]Let $ n$ and $ p$ be positive integers greater than $ 1$, with $ p$ being a prime. Show that if $ n$ divides $ p-1$ and $ p$ divides $ n^3-1$, then $ 4p-3$ is a perfect square.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="3.25" _i="1" _address="0.1"][et_pb_column type="4_4" _builder_version="3.25" custom_padding="|||" custom_padding__hover="|||" _i="0" _address="0.1.0"][et_pb_accordion open_toggle_text_color="#0c71c3" _builder_version="3.27" toggle_font="||||||||" body_font="Raleway||||||||" text_orientation="center" custom_margin="10px||10px" hover_enabled="0" _i="0" _address="0.1.0.0"][et_pb_accordion_item title="Source of the problem" open="off" _builder_version="3.27" _i="0" _address="0.1.0.0.0" hover_enabled="0"]

Argentina TST 2005 [/et_pb_accordion_item][et_pb_accordion_item title="Topic" _builder_version="3.27" _i="1" _address="0.1.0.0.1" open="on" hover_enabled="0"]Number Theory [/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.27" _i="2" _address="0.1.0.0.2" open="off" hover_enabled="0"]Easy [/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.27" _i="3" _address="0.1.0.0.3" open="off" hover_enabled="0"]An Excursion in Mathematics [/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" _i="1" _address="0.1.0.1"]

Start with hints

[/et_pb_text][et_pb_tabs active_tab_background_color="#0c71c3" inactive_tab_background_color="#000000" _builder_version="3.27" tab_text_color="#ffffff" tab_font="||||||||" background_color="#ffffff" hover_enabled="0" _i="2" _address="0.1.0.2"][et_pb_tab title="Hint 0" _builder_version="3.22.4" _i="0" _address="0.1.0.2.0"]Do you really need a hint? Try it first!

[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.27" _i="1" _address="0.1.0.2.1" hover_enabled="0"]Note that, $latex p$ divides either $latex n-1$ or $latex n^2+n+1$. Using inequalities, show that $latex p$ has to be greater than $latex n-1$. Hence $latex p|n^2+n+1$. [/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.27" _i="2" _address="0.1.0.2.2" hover_enabled="0"]Write $latex n^2+n+1=kp$ for some integer $latex k$. Using the fact that $latex n|p-1$, show that the integer $latex k$ has residue 1 modulo $latex n$. [/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.27" _i="3" _address="0.1.0.2.3" hover_enabled="0"]Note that, if $latex p\neq n^2+n+1$, then $latex k$ has to be greater than or equal to $latex n+1$. Show that this leads to a contradiction. [/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.27" _i="4" _address="0.1.0.2.4" hover_enabled="0"]As $latex p$ has residue 1 modulo $latex n$, we have $p\ge n+1$. This means that $latex n^2+n+1=kp\ge (n+1)(n+1)=n^2+2n+1$. This is clearly a contradiction. Hence $latex p=n^2+n+1$. Therefore $latex 4p-3=(2n+1)^2$. [/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.26.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" _i="3" _address="0.1.0.3"]

Watch video

[/et_pb_text][et_pb_code _builder_version="3.26.4" _i="4" _address="0.1.0.4"]
[/et_pb_code][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" _i="5" _address="0.1.0.5"]

Connected Program at Cheenta

[/et_pb_text][et_pb_blurb title="Math Olympiad Program" url="https://cheenta.com/matholympiad/" url_new_window="on" image="https://cheenta.com/wp-content/uploads/2018/03/matholympiad.png" _builder_version="3.23.3" header_font="||||||||" header_text_color="#e02b20" header_font_size="48px" link_option_url="https://cheenta.com/matholympiad/" link_option_url_new_window="on" _i="6" _address="0.1.0.6"]

Math Olympiad is the greatest and most challenging academic contest for school students. Brilliant school students from over 100 countries participate in it every year. Cheenta works with small groups of gifted students through an intense training program. It is a deeply personalized journey toward intellectual prowess and technical sophistication.[/et_pb_blurb][et_pb_button button_url="https://cheenta.com/matholympiad/" url_new_window="on" button_text="Learn More" button_alignment="center" _builder_version="3.23.3" custom_button="on" button_bg_color="#0c71c3" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3" background_layout="dark" _i="7" _address="0.1.0.7"][/et_pb_button][et_pb_text _builder_version="3.22.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" _i="8" _address="0.1.0.8"]

Similar Problems

[/et_pb_text][et_pb_post_slider include_categories="9" _builder_version="3.22.4" _i="9" _address="0.1.0.9"][/et_pb_post_slider][et_pb_divider _builder_version="3.22.4" background_color="#0c71c3" _i="10" _address="0.1.0.10"][/et_pb_divider][/et_pb_column][/et_pb_row][/et_pb_section]
More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram