Challenge and Thrill of Pre-College Mathematics by V.Krishnamuthy , C.R.Pranesachar, ect. [/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]
Do you really need a hint? Try it first!
[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]Let \(n\) be a \(k\) digit(s) number number , then \(n\) can be written as \(n=a_0+10a_1+10^2a_2+\cdots+10^{k-1}a_{k-1}\) Where ,\(a_0,a_1,...,a_{k-1}\) are digits of \(n\).
[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]\(a_0,a_1,...,a_{k-1} \in [1,9] \) as the range of the function \(g\) is \(\mathbb{N}\) \(\Rightarrow a_0,a_1,...,a_{k-1}\neq 0\) . Now \(g(n)=a_0a_1a_2\cdots a_{k-1}\le \underbrace{10\cdot10\cdot10\cdots 10}_{(k-1) times} \cdot a_{k-1}\) [Since \(a_0,a_1,...,a_{k-1} \le 10 \)] Equality holds when \(k=1\) .
[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.4"]\(\Rightarrow g(n)\le 10^{k-1}\cdot a_{k-1}\) \(\Rightarrow g(n)\le 10^{k-1}\cdot a_{k-1}+\cdots+10^2a_2+10a_1+a_0\) [Since \(a_0,a_1,...,a_{k-1} >0\)] \(\Rightarrow g(n)\le n\) (Proved) .
[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]\(n^2-12n+36=g(n)\) \(\Rightarrow n^2-12n+36 \le n\) [Since \(g(n) \le n\) ] \(\Rightarrow n^2-13n+36 \le 0\) \(\Rightarrow (n-9)(n-4) \le 0\) \(\Rightarrow 4\le n\le 9\) \(\Rightarrow n={4,5,6,7,8,9}\) (Ans.) .
[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.
The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.
[/et_pb_blurb][et_pb_button button_url="https://cheenta.com/matholympiad/" button_text="Learn More" button_alignment="center" _builder_version="3.22.4" custom_button="on" button_text_color="#ffffff" button_bg_color="#e02b20" button_border_color="#0c71c3" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]