Least Value of a Sum of Complex Numbers

Join Trial or Access Free Resources

Let's discuss a problem based on Least Value of a Sum of Complex Numbers. Try to solve it yourself before reading the solution.

Problem: Least Value of a Sum of Complex Numbers

If $ z_1 , z_2 , z_3 , z_4 \in \mathbb{C} $ satisfy $ z_1 + z_2 + z_3 + z_4 = 0 $ and $ |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 = 1 $ then the least value of $ |z_1 - z_2 |^2 + |z_1 - z_4|^2 + |z_2 - z_3|^2 + |z_3 - z_4|^2 $ is 2

True

Discussion:

$ |z_1 - z_2|^2 = (z_1 - z_2)(\bar{z_1} - \bar{z_2}) = |z_1|^2 + |z_2|^2 - (z_1 \bar {z_2} + \bar {z_1} {z_2} ) $

Similarly we compute the others to get the total sum as

$ 2 ( |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 ) $ -  $(z_1 + z_3) (\bar{z_2} + \bar {z_4} ) $

- $( \bar {z_1} + \bar {z_3} ) (z_2 + z_4 ) $

Since $ z_1 + z_3 = - (z_2 + z_4) $ thus $ \bar {z_2 } + \bar {z_4} = - ( \bar {z_1} + \bar {z_3} ) $ the above expression reduces to

$ 2 ( |z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 ) + 2 |z_1 + z_3|^2 \ge 2 $

 

Some Useful Links:

Our College Mathematics

Find the 165th Power of a Complex Number - Video

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram