ISI MStat PSB 2013 Problem 8 | Finding the Distribution of a Random Variable

Join Trial or Access Free Resources

This is a very beautiful sample problem from ISI MStat PSB 2013 Problem 8 based on finding the distribution of a random variable . Let's give it a try !!

Problem- ISI MStat PSB 2013 Problem 8


  1. Suppose \(X_{1}\) is a standard normal random variable. Define
  2. \( X_{2}= \begin{cases} - X_{1} & , \text{if } |X_{1}|<1 \\ X_{1} & \text{otherwise} \end{cases} \)
    (a) Show that \(X_{2}\) is also a standard normal random variable.
    (b) Obtain the cumulative distribution function of \(X_{1}+X_{2}\) in terms of the cumulative distribution function of a standard normal random
    variable.

Prerequisites


Cumulative Distribution Function

Normal Distribution

Solution :

(a) Let \( F_{X_{2}}(x) \) be distribution function of X_{2}\) then we can say that ,

\( F_{X_{2}}(x) = P( X_{2} \le x) = P( X_{2} \le x | |X_{1}| < 1) P( |X_{1}| <1) + P( X_{2} \le x | |X_{1}| > 1 ) P( |X_{1}| >1) \)

= \( P( - X_{1} ||X_{1}| < 1)P( |X_{1}| <1) + P( X_{1} \le x | |X_{1}| > 1 ) P( |X_{1}| >1) \)

= \( P( - X_{1}\le x , |X_{1}| < 1 ) + P( X_{1} \le x , |X_{1}| > 1 ) \)

= \( P( X_{1}\le x , |-X_{1}| < 1 ) + P( X_{1} \le x , |X_{1}| > 1 ) \)

Since \( X_{1} \sim N(0,1) \) hence it's symmetric about 0 . So,\( X_{1}\) and\( -X_{1}\) are identically distributed .

Therefore , \( F_{X_{2}}(x) = P( X_{1}\le x , |X_{1}| < 1 ) + P( X_{1} \le x , |X_{1}| > 1 ) \)

=\( P(X_{1} \le x ) = \Phi(x) \)

Hence , \(X_{2}\) is also a standard normal random variable.

(b) Let , \(Y= X_{1} + X_{2} = \begin{cases} 0 & \text{if } |X_{1}|<1 \\ 2X_{1} & \text{ otherwise } \end{cases} \)

Distribution function \( F_{Y}(y) = P(Y \le y) \)

=\( P(Y \le y | |X_{1} < 1) P(|X_{1}| <1) + P( Y\le y | |X_{1}| >1)P(|X_{1}|>1) \)

= \( P( 0 \le y , -1 \le X_{1} \le 1 ) + P( 2X_{1} \le y , ( X_{1} >1 \cup X_{1}<-1)) \) \)

= \( P(0 \le y , -1 \le X_{1} \le 1 ) + P( X_{1} \le \frac{y}{2} , X_{1} > 1) + P( X_{1} \le \frac{y}{2} , X_{1} < -1) \)

= \( P(0 \le y , -1 \le X_{1} \le 1 ) + P( 1< X_{1} \le \frac{y}{2}) + P( X_{1} \le min{ \frac{y}{2} , -1 } ) \)

= \( \begin{cases} P( -1 \le X_{1} \le 1 ) + P( 1< X_{1} \le \frac{y}{2}) + P( X_{1} \le -1) & y \ge 2 \\ P( -1 \le X_{1} \le 1 ) + P( X_{1} \le -1) & 0 \le y < 2 \\ P( X_{1} \le -1) & -2 \le y < 0 \\ P( X_{1} \le \frac{y}{2}) & y<-2 \end{cases} \)

= \( \begin{cases} \Phi( \frac{y}{2} ) & y<-2 \\ \Phi(-1) & -2 \le y < 0 \\ \Phi(1) & 0 \le y <2 \\ \Phi(\frac{y}{2} ) & y \ge 2 \end{cases} \) .

Food For Thought

Find the the distribution function of \( 2X_{1}-X_{2} \) in terms of the cumulative distribution function of a standard normal random variable.


Similar Problems and Solutions



ISI MStat PSB 2008 Problem 10
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram