Condition of real roots | Tomato objective 291

Join Trial or Access Free Resources

Problem: If the roots of the equation ${(x-a)(x-b)}$+${(x-b)(x-c)}$+${(x-c)(x-a)}$=$0$, (where a,b,c are real numbers) are equal , then

(A) $b^2-4ac=0$

(B) $a=b=c$

(C)  a+b+c=0

(D)  none of foregoing statements is correct

Answer: $(B)$ 

${(x-a)(x-b)}$+${(x-b)(x-c)}$+${(x-c)(x-a)}$=$0$

=> $x^2-{(a+b)}x$+$ab+x^2-{(b+c)}x$+$bc+x^2-{(c+a)}x+ca$=$0$

=> $3x^2-2{(a+b+c)}x$+$(ab+bc+ca)$=$0$

discriminant, of the equation is

=> $4{(a+b+c)^2}$-$4.3{(ab+bc+ca)}$=$0$

=> $a^2+b^2+c^2+2(ab+bc+ca)$-$3(ab+bc+ca)$=$0$

=> $a^2+b^2+c^2$-$(ab+bc+ca)$=$0$

=> $a=b=c$

So, option (B) is correct.

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram