Circle Problem | AMC 10A, 2006 | Problem 23

Join Trial or Access Free Resources

Try this beautiful problem from Geometry: Circle

Circle Problem - AMC-10A, 2006- Problem 23


Circles with centers $A$ and $B$ have radii 3 and 8 , respectively. A common internal tangent intersects the circles at $C$ and $D$, respectively. Lines $A B$ and $C D$ intersect at $E,$ and $A E=5 .$ What is $C D ?$

,

 i

  • $13$
  • $\frac{44}{3} $
  • $\sqrt{221}$
  • $\sqrt{255}$
  • \(\frac{55}{3}\)

Key Concepts


Geometry

Circle

Tangents

Check the Answer


Answer: $ \frac{44}{3}$

AMC-10 (2006) Problem 23

Pre College Mathematics

Try with Hints


Circle Problem

Given that Circles with centers $A$ and $B$ have radii 3 and 8 and $A E=5 .$.we have to find out \(CD\).So join \(BC\) and \(AD\).then clearly \(\triangle BCE\) and \(\triangle ADE\) are Right-Triangle(as \(CD\) is the common tangent ).Now \(\triangle BCE\) and \(\triangle ADE\) are similar.Can you proof \(\triangle BCE\) and \(\triangle ADE\)?

Can you now finish the problem ..........

Circle Problem

$\angle A E D$ and $\angle B E C$ are vertical angles so they are congruent, as are angles $\angle A D E$ and $\angle B C E$ (both are right angles because the radius and tangent line at a point on a circle are always perpendicular). Thus, $\triangle A C E \sim \triangle B D E$.

By the Pythagorean Theorem, line segment \(DE=4\)

Therefore from the similarity we can say that \(\frac{D E}{A D}=\frac{C E}{B C} \Rightarrow \frac{4}{3}=\frac{C E}{8}\) .

Therefore \(C E=\frac{32}{3}\)

can you finish the problem........

Therefore \(CD=CE+DE=4+\frac{32}{3}=\frac{44}{3}\)

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

One comment on “Circle Problem | AMC 10A, 2006 | Problem 23”

  1. Interesting problem from lativia.2015 ones are written in a row..It is allowed to delete any two written numbers a and b and is replaced by a+b/4 the process is continued as long as one number remains or the number is less than .0001.Prove that the last number is greater than .0001

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram