Cauchy Schwarz Problem: Let be a polynomial with non-negative coefficients.Prove that if
for
,then the same inequality holds for each
.
Discussion: Cauchy Schwarz's Inequality: Suppose for real numbers (\ a_{i},b_{i}), where (\ i\in{1,2,\dots,n}) we can say that $${\sum_{i=1}^{n}a_{i}^2}{\sum_{i=1}^{n}b_{i}^2}=\sum_{i=1}^{n}{a_{i}b_{i}}^2$$.
Titu's Lemma: Let (\ a_{i},b_{i}\in{\mathbb{R}}) and let (\ a_{i},b_{i}>0) for (\ i\in{1,2,\dots,n})
$$\sum_{i=1}^{n}\frac{a_{i}^2}{b_{i}}\ge\frac{{\sum_{i=1}^{n}a_{i}}^2}{\sum_{i=1}^{n}b_{i}}$$
Proof of Cauchy Schwarz's Inequality: We can write (\sum_{i=1}{n}a_{i}^2=\sum_{i=1}^{n}\frac{a_{i}^2 b_{i}^2}{b_{i}^2}\ge\frac{{\sum_{i=1}^{n}a_{i}b_{i}}^2}{\sum_{i=1}^{n}b_{i}^2}) (using Titu's lemma)
(=>{\sum_{i=1}^{n}a_{i}^2}{\sum_{i=1}^{n}b_{i}^2}\ge {\sum_{i=1}^{n}{a_{i}b_{i}}^2)
Solution: Let ,then
now
(Cauchy Schwarz's Inequality)
now it is given that for
,so
therefore,