What is Stirling Number of First Kind

Join Trial or Access Free Resources

We will learn about a combinatorics tool: Stirling Numbers of First Kind. Here is a video to get you started.

Problem 1

Show that
$$
s(r, n)=s(r-1, n-1)+(r-1) s(r-1, n)
$$
where $r, n \in \mathbf{N}$ with $n \leq r$

Problem 2

Show the following:

$$ s(r, 0)=0 \text { if } r \geq 1 $$

$$ s(r, r)=1 \text { if } r \geq 0 $$

$$ s(r, 1)=(r-1)! \text { for } r \geq 2 $$

$$ s(r, r-1)={{r} \choose {2}} $$

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram