Plane Geometry [/et_pb_accordion_item][et_pb_accordion_item title="Difficulty Level" _builder_version="3.22.4" open="off"]
5.5 out of 10
[/et_pb_accordion_item][et_pb_accordion_item title="Suggested Book" _builder_version="3.22.4" open="off"]
'Challenge and Thrill of Pre-College Mathematics' by V,Krishnamurthy, C.R.Pranesachar, ect.
Do you really need a hint? Try it first!
[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]\(PQ\) and \( RS\) are two chords of the circle \(C\) , intersecting at the point \(O\). See figure: click here.
[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]Given \(PO=3\) cm \(SO=4\) cm \([\triangle POR]= 7 cm^2\).
[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.4"]From the triangles \(POS\) and \(QOS\) we have, \(\angle POR=\angle SOQ\) [Opposite angles] \(\angle SRP=\angle SQO \) [Angle on the same semi-circle \(STP\)] \(\angle QSO= \angle OPR\) [Angle on the same semi-circle \(ST'P\)] Therefore the \(\triangle POR\) and \(\triangle SOQ\) are similar triangles .
[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]\(\frac{[\triangle POR]}{OP^2}=\frac{[\triangle SOQ]}{SO^2}.\) \(\Rightarrow [\triangle SOQ]=\frac{SO^2}{PO^2}\cdot [\triangle POR]\)=\(\frac{4^2}{3^2}\cdot 7=12\frac{4}{9}\).(Ans.)
[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.
The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.
[/et_pb_blurb][et_pb_button button_url="https://cheenta.com/isicmientrance/" button_text="Learn More" button_alignment="center" _builder_version="3.22.4" custom_button="on" button_text_color="#ffffff" button_bg_color="#e02b20" button_border_color="#e02b20" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]
Area of △POR/Area of △QOS=(PO/SO)^2; putting known values;
or 7 cm 2/Area of △QOS=(3 cm/ 4 cm )^2=9/16;
or (7 cm ^2) *(16/9)=Area of △QOS;
Therefore Area of △QOS= (112/9) cm^2=12.4(recurring) cm ^2 answer