Logarithm and Equations | AIME I, 2012 | Question 9

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on logarithm and Equations.

Logarithm and Equations - AIME I, 2012


Let x,y,z be positive real numbers \(2log_{x}(2y)\)=\(2log_{2x}(4z)=log_{2x^4}(8yz)\neq0\) the value of (x)(\(y^{5}\))(z) may be expressed in the form \(\frac{1}{2^\frac{p}{q}}\) where p and q are relatively prime positive integers, find p+q.

  • is 107
  • is 49
  • is 840
  • cannot be determined from the given information

Key Concepts


Equations

Algebra

Logarithm

Check the Answer


Answer: is 49.

AIME I, 2012, Question 9

Higher Algebra by Hall and Knight

Try with Hints


Let \(2log_{x}(2y)\)=\(2log_{2x}(4z)=log_{2x^4}(8yz) =2\) then from first and last term x=2y from second and last term 2x=4z and from third and last term \(4x^{8}=8yz\)

taking these together \(4x^{8}\)=(4z)(2y)=x(2x) then x=\(2^\frac{-1}{6}\) then y=z=\(2^\frac{-7}{6}\)

(x)(\(y^{5}\))(z) =\(2^\frac{-43}{6}\) then p+q =43+6=49.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram