Try this beautiful problem on Limit, useful for ISI B.Stat Entrance.
Let \(a_1 = 1\) and \(a_n = n(a_{n-1} + 1)\) for \(n = 2, 3, ….\) Define \(P_n = (1 +1/a_1)(1 + 1/a_2)….(1 + 1/a_n)\). Then \(\lim\limits_{x \to \infty} {P_n}\)?
Calculus
Limit
Trigonometry
Answer: (b)\(e\)
TOMATO, Problem 709
Challenges and Thrills in Pre College Mathematics
Given that \(P_n = (1 +1/a_1)(1 + 1/a_2)….(1 + 1/a_n)\)
Therefore \(P_n=\frac{a_1 +1}{a_1}.\frac{a_2 +1}{a_2}.\frac{a_3 +1}{a_3}.....\frac{a_n +1}{a_n}\)
Now \(a_n = n(a_{n-1} + 1)\)
Put \(n=2\), we will get \(a_1+1=\frac{a_2}{2}\)
\(a_2+1=\frac{a_3}{3}\)...................
.............................
..............................
\(a_n+1=\frac{a_n}{n}\)
Therefore \(P_n=\frac{a_1 +1}{a_1}.\frac{a_2 +1}{a_2}.\frac{a_3 +1}{a_3}.....\frac{a_n +1}{a_n}\)
\(\Rightarrow {P_n}= \frac{a_2}{2a_1}.\frac{a_3}{3a_2}.\frac{a_4}{4a_3}........\frac{a_{n+1}}{(n+1).{a_n}}\)
\(\Rightarrow {P_n}=\frac{a_{n+1}}{{a_1}\{2.3.4...........(n+1)\}}\)
\(\Rightarrow {P_n}=\frac{a_{n+1}}{\{1.2.3.4...........(n+1)\}}\) (as \(a_1=1\))
\(\Rightarrow {P_n}=\frac{a_{n+1}}{(n+1)!}\)
\(\Rightarrow {P_n}=\frac{(n+1)(a_n +1)}{(n+1)!}\)
\(\Rightarrow {P_n}=\frac{(a_n +1)}{n!}\)
\(\Rightarrow {P_n}=\frac{a_n}{n!} +\frac{1}{n!}\)
\(\Rightarrow {P_n}=\frac{n(a_{n-1}+1)}{n!}+\frac{1}{n!}\)
\(\Rightarrow {P_n}=\frac{a_{n-1}+1}{(n-1)!}+\frac{1}{n!}\)
\(\Rightarrow {P_n}=\frac{a_{n-1}}{(n-1)!}+\frac{1}{(n-1)!}+\frac{1}{n!}\)
\(\Rightarrow {P_n}=\frac{a_2}{2!}+\frac{1}{2!}+\frac{1}{3!}+.......+\frac{1}{n!}\)
\(\Rightarrow {P_n}=\frac{2(1+1)}{2!}+\frac{1}{2!}+....+\frac{1}{n!}\)
\(\Rightarrow {P_n}=1+\frac{1}{1!}+.....+\frac{1}{n!}\)
Can you now finish the problem ..........
Now we have to find out \(\lim\limits_{x \to \infty} {P_n}\)
we know that \(e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+..........+\infty\)
So,\(e^1=1+\frac{1}{1!}+\frac{1^2}{2!}+..........+\infty\)
\(\lim\limits_{x \to \infty} {P_n}\)=\(1+\frac{1}{1!}+\frac{1^2}{2!}+..........+\infty\)
\(\lim\limits_{x \to \infty} {P_n}\)=\(e\)
Therefore option (b) is correct.....