INMO 2010 Questions - Indian National Mathematical Olympiad

Join Trial or Access Free Resources

This post contains Indian National Mathematical Olympiad, INMO 2010 questions. Try to solve these problems and share it in the comments.

  1. Let ABC be a triangle with circum-circle $ \Gamma $.Let M be a point in the interior of the triangle ABC which is also on the bisector of $ \angle A $. Let AM, BM, CM meets $ \Gamma $ in $ A_1,B_1,C_1 $ respectively. Suppose P is the point of intersection of $ A_1,B_1 $ with AC. Prove that PQ is parallel to BC.
  2. Find all natural numbers n>1 such that $ n^2 $ does not divide (n-2)!.
  3. Find all non-zero real numbers $ x,y,z $which satisfy the system of equations: $ (x^2+xy+y^2)(y^2+yz+z^2)(z^2+zx+x^2)=xyz $, $ x^4+x^2y^2+y^4)(y^4+y^2z^2+z^4)(z^4+z^2x^2+x^4)=x^3y^3z^3 $
  4. How many 6-tuples $ (a_1,a_2,a_3,a_4,a_5,a_6) $are there such that each of $ a_1,a_2,a_3,a_4,a_5,a_6 $ is from the set {1,2,3,4} and the six expressions $ a_j^2-a_ja_{j+1}+a_{j+1}^2 $ for $ j=1,2,3,4,5,6 $ (where $ a_7 $ is to be taken as $ a_1 $ ) are all equal to one another?
  5. Let ABC be an acute-angled triangle with altitude AK. Let H be its orthocentre and O be its circumcentre. Suppose KOH is an acute-angled triangle and P its circumcircle. Let Q be the reflection of P in the line HO. Show that Q lies on the line joining the mid-points of AB and AC.
  6. Define a sequence $ (a_n)_{n \ge 0} $ by $ a_0=0 $ , $ a_1=1 $ and $ a_{n}=2a_{n-1}+a_{n-2} $, for $ n \ge 2 $. (a) For every $ m>0 $ and $ 0 \le j \le m $,prove that $ 2a_m $ divides $ a_{m+j}+(-1)^{j}a_{m-j} $.(b) Suppose $ 2^{k} $ divides n for some natural numbers n and k. Prove that $ 2^k $ divides a_n.
More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram