This is a subjective problem number 3 from ISI BMath 2011 based on inequality of a product expression. Try out this problem.
Problem: Inequality of a product expression
For $latex \mathbf{n\in\mathbb{N}}$ prove that $latex \mathbf{\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{2n-1}{2n}\leq\frac{1}{\sqrt{2n+1}}}$
Discussion
Note that $latex \mathbf{ \frac{2n}{2n+1} \ge \frac{2n-1}{2n} }$ since simple cross multiplication gives $latex \mathbf{ 4n^2 \ge 4n^2 - 1 }$ which is true for all $latex \mathbf{n\in\mathbb{N}}$
Hence $latex \mathbf{\frac{1}{2} \le \frac{2}{3} , \frac{3}{4} \le \frac{4}{5} }$ etc.
Let $latex \mathbf{ x = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{2n-1}{2n} \implies x \le \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdots\frac{2n}{2n+1} \implies x^2 \le \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}\cdots\frac{2n-1}{2n}\cdot\frac{2n}{2n+1}}$
All the terms cancel cross wise except 2n+1.
Thus $latex \mathbf{ x = \frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{2n-1}{2n} \le \frac{1}{2n+1} }$
(proved)
Special Note
It is possible to show (by induction) a much stronger result; $latex \mathbf{\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{2n-1}{2n}\leq\frac{1}{\sqrt{3n+1}}}$
How to use invariance in Combinatorics - ISI Entrance Problem - Video
[…] For prove that Solution […]