(a) Let \(n=2^{k_0}p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}\) . So, \(\phi(n)=2^{k_0-1}p_1^{k_1-1}p_2^{k_2-1}\cdots p_r^{k_r-1}(2-1)(p_1-1)(p_2-1)\cdots (p_r-1)\) . Now, we use the inequalities \(k-\frac{1}{2}\ge \frac{k}{2}\) and \(p-1>\sqrt{p}\) for \(p>2\). So, we have \(\phi(n)\le 2^{k_0-1}p_1^{k_1/2}p_2^{k_2/2}\cdots p_r^{k_r/2}\ge \frac{1}{2}\sqrt{n}\) .
Now, also \(p-1<p\) . So, \(\phi(n)\le 2^{k_0}p_1^{k_1}p_2^{k_2}\cdots p_r^{k_r}=n\) .
Combining them up we get $$\frac{1}{2}\sqrt{n}\le \phi(n)\le n$$ as required.
(c) Let \(p\) be the smallest prime divisor of \(n\) so that, \(p\le \sqrt{n}\). Then \(\phi(n) \le n\left(1-\frac{1}{p}\right)\) . We know that, \(p\le \sqrt{n}\) which implies \(1-\frac{1}{p}\le 1-\sqrt{n}\). So, \(\phi(n) \le n\left(1-\frac{1}{p}\right)\le n\left(1-\frac{1}{\sqrt{n}}\right)=n-\sqrt{n}\).
Hence, we are done! 🙂