Let's understand the factor method of Diophantine equations step-by-step. Aso, try the question related to it.
Diophantine Equations
Consider an equation for which we seek only integer solutions. There is no standard technique of solving such a problem, though there are some common heuristics that you may apply. A simple example is $ x^2 - y^2 = 31$. Suppose we wish to find out the integer solutions to this equation.
First notice that if 'x' and 'y' are solutions, so are '-x' and '-y' (and vice versa). So it is sufficient to investigate positive solutions.
The factor method relies on the following steps:
Illustration
$ x^2 - y^2 = 31 \newline (x-y)(x+y) = 31 $
But 31 is a prime. So the only way 31 can be written as a product of two positive numbers is 1 times 31.
Since x-y is smaller, the only possibility is x-y=1, x+y=31, giving solutions x=16, y=15
Problems