Derivative of Function Problem | TOMATO BStat Objective 757

Join Trial or Access Free Resources

Try this problem from I.S.I. B.Stat Entrance Objective Problem based on Derivative of Function.

Derivative of Function Problem (B.Stat Objective Question )


If f(x)=(sinx)(sin2x).....(sinnx), then f'(x) is

  • \(\sum_{k=1}^{n}(kcos{kx})f(x)\)
  • \(\sum_{k=1}^{n}(kcot{kx})f(x)\)
  • \((cosx)(2cos2x)(3cos3x).....(ncosnx)\)
  • \(\sum_{k=1}^{n}(kcos{kx})(sin{kx})\)

Key Concepts


Equation

Derivative

Algebra

Check the Answer


Answer:\(\sum_{k=1}^{n}(kcot{kx})(f(x)\).

B.Stat Objective Problem 757

Challenges and Thrills of Pre-College Mathematics by University Press

Try with Hints


f(x)=(sinx)(sin2x).....(sinnx)

or, \(f'(x)=cosx(sin2x).......(sinnx)\)

+\(2sinxcos2x....(sinnx)+.....+n(sinx)(sin2x)....(cosnx)\)

=\(\sum_{k=1}^{n}k\frac{coskx}{sinkx}f(x)\)

=\(\sum_{k=1}^{n}kcot{kx}f(x)\).

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

© 2010 - 2025, Cheenta Academy. All rights reserved.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram