Consecutive positive Integers | AIME I, 1990| Question 11

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 1990 based on consecutive positive integers.

Consecutive positive integer - AIME I, 1990


Someone observed that 6!=(8)(9)(10). Find the largest positive integer n for which n! can be expressed as the product of n-3 consecutive positive integers.

  • is 107
  • is 23
  • is 634
  • cannot be determined from the given information

Key Concepts


Integers

Inequality

Algebra

Check the Answer


Answer: is 23.

AIME I, 1990, Question 11

Elementary Number Theory by David Burton

Try with Hints


The product of (n-3) consecutive integers=\(\frac{(n-3+a)!}{a!}\) for a is an integer

\(n!=\frac{(n-3+a)!}{a!}\) for \(a \geq 3\) \((n-3+a)! \geq n!\)

or, \(n!=\frac{n!(n+1)(n+2)....(n-3+a)}{a!}\)

for a=4, n+1=4! or, n=23 which is greatest here

n=23.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram