Circles and Triangles | AIME I, 2012 | Question 13

Join Trial or Access Free Resources

Try this beautiful problem from the American Invitational Mathematics Examination I, AIME I, 2012 based on Circles and triangles.

Circles and triangles - AIME I, 2012


Three concentric circles have radii 3,4 and 5. An equilateral triangle with one vertex on each circle has side length s. The largest possible area of the triangle can be written as \(a+\frac{b}{c}d^\frac{1}{2}\) where a,b,c,d are positive integers b and c are relative prime and d is not divisible by the square of any prime, find a+b+c+d.

  • is 107
  • is 41
  • is 840
  • cannot be determined from the given information

Key Concepts


Angles

Trigonometry

Triangles

Check the Answer


Answer: is 41.

AIME I, 2012, Question 13

Geometry Revisited by Coxeter

Try with Hints


In triangle ABC AO=3, BO=4, CO=5 let AB-BC=CA=s [ABC]=\(\frac{s^{2}3^\frac{1}{2}}{4}\)

\(s^{2}=3^{2}+4^{2}-2(3)(4)cosAOB\)=25-24cosAOB then [ABC]=\(\frac{25(3)^\frac{1}{2}}{4}-6(3)^\frac{1}{2}cosAOB\)

of the required form for angle AOB=150 (in degrees) then [ABC]=\(\frac{25(3)^\frac{1}{2}}{4}+9\) then a+b+c+d=25+3+4+9=41.

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram