Centroid Problem: Ratio of the areas of two Triangles

Join Trial or Access Free Resources

Try this beautiful problem from Geometry based on Centroid.

Centroid Problem: Ratio of the areas of two Triangles


\(\triangle ABC\) has centroid \(G\).\(\triangle ABG\),\(triangle BCG\), and \(\triangle CAG\) have centroids \(G_1\), \(G_2\), \(G_3\) respectively. The value of \(\frac{[G1G2G3]}{[ABC]}\) can BE represented by \(\frac{p}{q}\) for positive integers \(p\) and \(q\).

Find \(p+q\) where\([ABCD]\) denotes the area of ABCD.

  • $14$
  • $ 10$
  • $7$

Key Concepts


Geometry

Triangle

centroid

Check the Answer


Answer: \(10\)

Question Papers

Pre College Mathematics

Try with Hints


Centroid Problem

\(\triangle ABC\) has centroid \(G\).\(\triangle ABG\),\(triangle BCG\), and \(\triangle CAG\) have centroids \(G1\),\(G2\),\(G3\) respectively.we have to find out value of \(\frac{[G1G2G3]}{[ABC]}\) i.e area of \(\frac{[G1G2G3]}{[ABC]}\)

Let D, E, F be the midpoints of BC, CA, AB respectively.
Area of $\frac{[DEF]}{[ABC]}$=$\frac{1}{4}$

we know that any median is divided at the centroid $2:1$. Now can you find out \(GG_1,GG_2,GG_3\) ?

Can you now finish the problem ..........

Centroid Problem

we know that any median is divided at the centroid $2:1$
Now  $G_1$ is the centroid of $\triangle ABG$, then$GG_1=2G_1F$
Similarly,$GG_2 = 2G_2D$ and$GG_3 = 2G_3E$
Thus, From  homothetic transformation  $\triangle G_1G_2G_3$ maps to $\triangle FDE$ by a homothety of ratio$\frac{2}{3}$
Therefore,$\frac{[G_1G_2G_3]}{[DEF]}$ = $(\frac{2}{3})^2$=$\frac{4}{9}$

can you finish the problem........

Therefore we say that $\frac{[G_1G_2G_3]}{[ABC]}$ = $\frac{[G_1G_2G_3]}{[DEF]}\cdot \frac{[DEF]}{[ABC]} $= $\frac{4}{9}\cdot \frac{1}{4}$=$\frac{1}{9}$=$\frac{p}{q}$

So $p+q$=$9+1$=\(10\)

Subscribe to Cheenta at Youtube


More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram