'Elementary Number Theory' by David M. Burton
'Challenge and Thrill of Pre-College Mathematics' by V,Krishnamurthy, C.R.Pranesachar, ect.
[/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]
Do you really need a hint? Try it first!
[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]\(a^2+b^2=c^2=(b+1)^2=b^2+2b+1\) \(\Rightarrow a^2=2b+1\) Which implies \(a^2\) is odd integer. \(\Rightarrow a\) is also an odd integer =\(2k+1\) (say).
[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]\((2k+1)^2+b^2=c^2\) \(\Rightarrow 4k^2+4k+1+b^2=b^2+2b+1\) \(\Rightarrow b=2k(k+1)\). Now \(k(k+1) \) is always even =\(2l\) (say). Therefore, \(b=4l\), i.e. \(b\) is divisible by 4.
[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.4"]\(a^b+b^a=a^{4l}+b^{2k+1}=(a^2)^{2l}+(c-1)^{2k+1}\) =\((2b+1)^{2l}+(c-1)^{2k+1}\) =\((2c-1)^{2l}+(c-1)^{2k+1}.\)
[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]Now \(2l\) is even , therefore , \((2c-1)^{2l} \) is of the form : \( 2cp+1\) where \(p \in \mathbb{N}\). And \(2k+1\) is odd , therefore \((c-1)^{2k+1} \) is of the form : \(cq-1\), where \(q \in \mathbb{N}\). Therefore \(a^b+b^a=(2cp+1)+(cq-1)=c\cdot (2p+q)\). \(\Rightarrow c|a^b+b^a\).
[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.
The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.
[/et_pb_blurb][et_pb_button button_url="https://cheenta.com/isicmientrance/" button_text="Learn More" button_alignment="center" _builder_version="3.22.4" custom_button="on" button_text_color="#ffffff" button_bg_color="#e02b20" button_border_color="#e02b20" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]