A trigonometric polynomial ( INMO 2020 Problem 2)

Join Trial or Access Free Resources

The problem

Suppose $P(x)$ is a polynomial with real coefficients satisfying the condition
$$
P(\cos \theta+\sin \theta)=P(\cos \theta-\sin \theta),
$$
for every real $\theta$. Prove that $P(x)$ can be expressed in the form
$$
P(x)=a_0+a_1\left(1-x^2\right)^2+a_2\left(1-x^2\right)^4+\cdots+a_n\left(1-x^2\right)^{2 n},
$$
for some real numbers $a_0, a_1, a_2, \ldots, a_n$ and nonnegative integer (n).

Hint 1

Using a very standard trigometric identity, we can easily convert the following ,
$$
\begin{aligned}
P(\cos \theta+\sin \theta) & =P(\cos \theta-\sin \theta
\Longrightarrow P\left(\sqrt{2} \sin \left(\frac{\pi}{4}+\theta\right)\right) & =P\left(\sqrt{2} \cos \left(\frac{\pi}{4}+\theta\right)\right) \
\Longrightarrow P(\sqrt{2} \sin x) & =P(\sqrt{2} \cos x)
\end{aligned}
$$
⟹ \(P(\sqrt{2} \sin x)=P(\sqrt{2} \cos x) \quad\)

Assuming,

$\left(\frac{\pi}{4}+\theta\right)=x$ for all reals $x$. So,

$P(-\sqrt{2} \sin (x))=P(\sqrt{2} \sin (-x))=P(\sqrt{2} \cos (-x))=P(\sqrt{2} \cos (x))=P(\sqrt{2} \sin (x))$ for all $x \in \mathbb{R}$. Since $P(x)=P(-x)$ holds for infinitely many $x$, it must hold for all $x$ (since $P(x)$ is a polynomial). so we get that, $P(x)$ is a even polynomial.

Hint 2

$P(\sqrt{2} \cos (x))=P(\sqrt{2} \sin (x))$ implies that
$$
P(t)=P\left(\sqrt{2} \sin \left(\cos ^{-1}(t / \sqrt{2})\right) \text { putting }, x=\cos ^{-1}(t / \sqrt{2})\right.
$$
for infinitely many $t \in[-\sqrt{2}, \sqrt{2}]$.
$$
\sqrt{2} \sin \left(\cos ^{-1}(t / \sqrt{2})\right)=\sqrt{2-t^2} \text { so we get, } P(x)=P\left(\sqrt{2-t^2}\right)
$$

Again as it is a polynomial function we can extend it all $\mathbb{R}$. And we get, $P(x)=P\left(\sqrt{2-x^2}\right)$ for all reals (x)

Hint 3

Since $P(x)$ is even, we can choose an even polynomial $Q(x)$ such that, $Q(x)=P(\sqrt{x+1}) \cdot P(\sqrt{1+x}$=$Q(x)=a_0+a_1 x^2+a_2 x^4+\cdots+a_n x^{2 n}$ now take, $\sqrt{1+x}=y$ and you get the polynomial of required form.

Get Started with Math Olympiad Program

Outstanding mathematics for brilliant school students. Work with great problems from Mathematics Olympiads, Physics, Computer Science, Chemistry Olympiads and I.S.I. C.M.I. Entrance. 

More Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

One comment on “A trigonometric polynomial ( INMO 2020 Problem 2)”

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram