Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #98357

    For each positive integer \(n \geq 3\), define \(A_n\) and \(B_n\) as
    \[
    \begin{gathered}
    A_n=\sqrt{n^2+1}+\sqrt{n^2+3}+\cdots+\sqrt{n^2+2 n-1}, \\
    B_n=\sqrt{n^2+2}+\sqrt{n^2+4}+\cdots+\sqrt{n^2+2 n}
    \end{gathered}
    \]

    Determine all positive integers \(n \geq 3\) for which \(\left\lfloor A_n\right\rfloor=\left\lfloor B_n\right\rfloor\).
    Note. For any real number \(x,\lfloor x\rfloor\) denotes the largest integer \(N\) such that \(N \leq x\).

    #98431
    Cheenta Support
    Participant

    Obviously, \(B_n>A_n\ , \forall n\in\mathbb{N}\). Let us bound the value \(B_n-A_n\),

    \[B_n-A_n=\left(\sqrt{n^2+2}-\sqrt{n^2+1}\right)+\left(\sqrt{n^2+4}-\sqrt{n^2+3}\right)+\cdots+\left(\sqrt{n^2+2n}-\sqrt{n^2+2n-1}\right)\]

    \[=\frac{1}{\sqrt{n^2+2}+\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+4}+\sqrt{n^2+3}}+\cdots+\frac{1}{\sqrt{n^2+2n}+\sqrt{n^2+2n-1}}\]

    \[>\frac{1}{\sqrt{n^2+2n}+\sqrt{n^2+2n-1}}+\frac{1}{\sqrt{n^2+2n}+\sqrt{n^2+2n-1}}+\cdots+\frac{1}{\sqrt{n^2+2n}+\sqrt{n^2+2n-1}}\]

    \[=\frac{n}{\sqrt{n^2+2n}+\sqrt{n^2+2n-1}}>\frac{n}{\sqrt{n^2+2n+1}+\sqrt{n^2+2n+1}}=\frac{n}{2n+2}\]

    Similarly,

    \[B_n-A_n<\frac{1}{\sqrt{n^2+2}+\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}+\sqrt{n^2+1}}+\cdots+\frac{1}{\sqrt{n^2+2}+\sqrt{n^2+1}}\]

    \[=\frac{n}{\sqrt{n^2+2}+\sqrt{n^2+1}}<\frac{n}{\sqrt{n^2}+\sqrt{n^2}}=\frac{1}{2}\]

    Hence, \[\boxed{\frac{n}{2n+2}<B_n-A_n<\frac{1}{2},\ \forall n\in\mathbb{N}}\]

    Let \(\{x\}\) denote the fractional part of the real number \(x\) and adding (or) subtracting integer to \(x\) to not alter its fractional part. Then,

    \[\{A_n\}=\left\{\left(\sqrt{n^2+1}-n\right)+\left(\sqrt{n^2+3}-n\right)+\cdots+\left(\sqrt{n^2+2n-1}-n\right)\right\}\]

    \[\Rightarrow \{A_n\}=\left\{\frac{1}{\sqrt{n^2+1}+n}+\frac{3}{\sqrt{n^2+3}+n}+\cdots+\frac{2n-1}{\sqrt{n^2+2n-1}+n}\right\}\]

    Let us now analyse the number \(Y=\frac{1}{\sqrt{n^2+1}+n}+\frac{3}{\sqrt{n^2+3}+n}+\cdots+\frac{2n-1}{\sqrt{n^2+2n-1}+n}\). Note that, \[Y<\frac{1}{\sqrt{n^2+1}+n}+\frac{3}{\sqrt{n^2+1}+n}+\cdots+\frac{2n-1}{\sqrt{n^2+1}+n}\]

    \[=\frac{n^2}{\sqrt{n^2+1}+n}<\frac{n^2}{\sqrt{n^2}+n}=\frac{n}{2}\]

    Similarly,

    \[Y>\frac{1}{\sqrt{n^2+2n-1}+n}+\frac{3}{\sqrt{n^2+2n-1}+n}+\cdots+\frac{2n-1}{\sqrt{n^2+2n-1}+n}\]

    \[=\frac{n^2}{\sqrt{n^2+2n-1}+n}>\frac{n^2}{\sqrt{n^2+2n+1}+n}=\frac{n^2}{2n+1}\]

    Hence, we get that, \(\frac{n^2}{2n+1}<Y<\frac{n}{2}\). But we have, \(\frac{n^2}{2n+1}>\frac{n-1}{2}>\frac{n}{2}-1\), which is trivial just by cross multiplication. So,

    \[\boxed{\frac{n}{2}>Y>\frac{n^2}{2n+1}>\frac{n-1}{2}>\frac{n}{2}-1}\]

    Case 1: \(n\) is odd, then \(\{Y\}<\frac{1}{2}\). So, \(\{A_n\}=\{Y\}<\frac{1}{2}\) and hence \(B_n\) and \(A_n\) will have the same integer part since \(B_n-A_n<\frac{1}{2}\)

    Case 2: \(n\) is even, then \(\{Y\}>\frac{n^2}{2n+1}-\left(\frac{n}{2}-1\right)=1-\frac{n}{4n+2}>1-\frac{n}{2n+2}\).

    Now notice that \(\{A_n\}=\{Y\}>1-\frac{n}{2n+2}\) and we have \(B_n-A_n>\frac{n}{2n+2}\) and adding these both we get \(B_n-(A_n-\{A_n\})>1\Rightarrow B_n-\lfloor A_n\rfloor>1\Rightarrow \lfloor B_n\rfloor\neq \lfloor A_n\rfloor\)

    Hence, all the odd numbers \(n\geq 3\) will satisfy \(\lfloor B_n\rfloor=\lfloor A_n\rfloor\) and none of the even numbers satisfy

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram