
Let A BE THE POINT (0,0) and AH the posi
tive X axis .If C is $(x_0,y_0)$ then B has to be $(x_0,-y_0)$ and H,$(x_0,0)$
Let E=$(e_1,e_2)$,E must satisfy the equation $(\frac{e_1}{x_0}=\frac{e_2}{y_0})$ and $(\frac{e_2 -0}{e_1 -x_0})(\frac{y_0}{x_0})$=-1
i.e$ (e_1y_0 = e_2 x_0)$ and $e_2y_0 = {x_2}^2 x_0 e_1$
From these we get $(e_1 x_0)y_0 = e_2{x_0}^2$
$\Rightarrow y_0({x_0}^2- e_2 y_0)=e_2 {x_0}^2$
$\Rightarrow e_2 = \frac{y_0{x_0}^2}{{x_0}^2+{y_0}^2}$
$\Rightarrow e_1 = \frac{e_2 x_0}{y_0}=\frac{{x_0}^3}{{x_0}^2+{y_0}^2}$
Hence, O=$(\frac{1}{2} (\frac{{x_0}^3}{{x_0}^2+{y_0}^2} +x_0)$,$\frac{1}{2} \frac{y_0{x_0}^2}{{x_0}^2+{y_0}^2})$
To prove that AO perpendicular BE we must check $(\frac {y_0 {x_0}^2}{2{x_0}^2+x_0{y_0}^2})(\frac {\frac {y_0 {x_0}^2}{{x_0}^2+{y_0}^2} +y_0}{\frac {{x_0}^3}{{x_0}^2+{y_0}^2 }-x_0})=-1$
L.H.S,
$(\frac{y_0 x_0}{2{x_0}^2+{y_0}^2})(\frac{ y_0{x_0}^2+y_0 {x_0}^2+{y_0}^3}{{x_0}^3-{x_0}^3-x_0{y_0}^2})$
=$(\frac {y_0 x_0}{2{x_0}^2 +{y_0}^2})(\frac{2{x_0}^2 +{y_0}^2}{-x_0 y_0})=-1$