Mathematical Olympiad Challenges by Titu Andreescu & Razvan Gelca. [/et_pb_accordion_item][/et_pb_accordion][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="48px||48px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]
Do you really need a hint? Try it first!
[/et_pb_tab][et_pb_tab title="Hint 1" _builder_version="3.22.4"]For \(n\ge 2\), \(\sqrt{2+\sqrt{2+\cdots +\sqrt{2}}}\) (\( n\) many radicals) =\(\sqrt{2+\sqrt{2+\cdots +\sqrt{2+0}}}\) =\(\sqrt{2+\sqrt{2+\cdots +\sqrt{2+2\cos \frac{π}{2}}}}\).
[/et_pb_tab][et_pb_tab title="Hint 2" _builder_version="3.22.4"]=\(\sqrt{2+\sqrt{2+\cdots +\sqrt{2(1+\cos \frac{π}{2})}}}\) =\(\sqrt{2+\sqrt{2+\cdots +\sqrt{4\cos^2 \frac{π}{2^2}}}}\) =\(\sqrt{2+\sqrt{2+\cdots +2\cos \frac{π}{2^2}}}\). (\(n-1\) many radicals) ........ ........... .......... ... ....... ... ....... ......... ............ ..... ......... =\(2\cos \frac{π}{2^n}\) \([n\ge 2]\).
[/et_pb_tab][et_pb_tab title="Hint 3" _builder_version="3.22.4"]Now \(A_n=\sqrt{2-2\cos \frac{π}{2^n}}\) \(\Rightarrow A_n= \sqrt{2(1-\cos \frac{π}{2^n})}\) \(\Rightarrow A_n= \sqrt{4\sin^2 \frac{π}{2^{n+1}}}\) \(\Rightarrow A_n= 2\sin \frac{π}{2^{n+1}}\).
[/et_pb_tab][et_pb_tab title="Hint 4" _builder_version="3.22.4"]Now \(\displaystyle\lim_{n\to \infty} 2^nA_n=\displaystyle\lim_{n\to \infty} 2^{n+1}\cdot \sin \frac{π}{2^{n+1}}\). Since , \(n \to \infty \) \(\Rightarrow 2^{n+1}\to \infty \) \(\Rightarrow \frac{π}{2^{n+1}}\to 0\) Let \(\frac{π}{2^{n+1}}=z \Rightarrow z \to 0\), when \(n \to \infty\). Therefore, \(\displaystyle\lim_{n\to \infty} 2^n A_n \)=\(\displaystyle\lim_{z \to 0}\frac{\sin z}{z}\cdot π =1\times π=π\). (Ans.)
[/et_pb_tab][/et_pb_tabs][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" min_height="12px" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]Indian Statistical Institute and Chennai Mathematical Institute offer challenging bachelor’s program for gifted students. These courses are B.Stat and B.Math program in I.S.I., B.Sc. Math in C.M.I.
The entrances to these programs are far more challenging than usual engineering entrances. Cheenta offers an intense, problem-driven program for these two entrances.
[/et_pb_blurb][et_pb_button button_url="https://cheenta.com/isicmientrance/" button_text="Learn More" button_alignment="center" _builder_version="3.22.4" custom_button="on" button_text_color="#ffffff" button_bg_color="#e02b20" button_border_color="#e02b20" button_border_radius="0px" button_font="Raleway||||||||" button_icon="%%3%%" background_layout="dark" button_text_shadow_style="preset1" box_shadow_style="preset1" box_shadow_color="#0c71c3"][/et_pb_button][et_pb_text _builder_version="3.27.4" text_font="Raleway|300|||||||" text_text_color="#ffffff" header_font="Raleway|300|||||||" header_text_color="#e2e2e2" background_color="#0c71c3" custom_margin="50px||50px" custom_padding="20px|20px|20px|20px" border_radii="on|5px|5px|5px|5px" box_shadow_style="preset3" inline_fonts="Aclonica"]