2022 AMC 10A, Problem 20, Hints and Solution

Motivation

To find the last term in a sequence, each term formed by adding similar indexed term from an AP and a GP.

Question

A four-term sequence is formed by adding each term of a four-term arithmetic sequence of positive integers to the corresponding term of a four-term geometric sequence of positive integers. The first three terms of the resulting four-term sequence are 57, 60 and 91. What is the fourth of this sequence?

Hint 1

Use the standard forms of the terms of the progressions to obtain a system of equations.

Hint 2

Try to reduce the number of variables from the system by subtracting two subsequent equations at a time. 

Let $a,ar,ar^2,ar^3$, be the first three terms of the geometric progression, and $b,b+d,b+2d,b+3d$ be the corresponding terms of the arithmetic progression.

We are given, that

$$a+b=57$$

$$ar+b+d=60$$

$$ar^2+b+2d=91.$$

Final Solution

These are 3 non-linear equations in 4 variables, so we can't directly conclude anything. Notice that if we subtract the first two equations we get, discarding $b$ $$3=a(r-1)+d$$ and similarly 

 $$31=ar(r-1)+d.$$

Each of these equations contain, the same variable. So subtracting again, we get

$$28=ar^2-2ar+a=a(r-1)^2.$$

Now since we're dealing with sequences of positive integers, then we can only equate $(r-1)^2$ to either $4$ or $1$.

Then we can conclude that either $a=28$ and $r=2$ or $a=7$ and $r=3$.

If $a=28$, then we get $b=57-28=29$ and $d=-25$. But that makes the arithmetic progression $29,4,-21,-46$, which is a contradiction since the sequence is of positive integers. With $a=7$, $b=50$, and $d=-11$ we get following progressions $50,39,28,17$ and $7,21,63,189$.

The desired number is then

$$17+189=206$$

New AMC 10 & 12 Review Course

Cheenta is offering a 36-hour program on AMC 10 & 12. In this short review course, we will cover concepts from Number Theory, Geometry, Algebra, and Combinatorics. This course is problem-driven in nature, in the sense concepts will be introduced and taught using relevant problems.

Schedule

The program starts on September 9th. The online live class Group A meets on Saturday and Sunday at 6 AM IST. The Group B meets on Saturday and Sunday at 5:30 PM IST. That is we have two time slots. You may choose any one.

Curriculum and Other Details

Apply for Trial Class

AMC 10A 2002 Problem 15 | Prime Number

Try this beautiful Problem based on Number theory from AMC 10A, 2002 Problem 15.

Prime Number | AMC 10A 2021, Problem 15


Using the digits $1,2,3,4,5,6,7$, and 9 , form 4 two-digit prime numbers, using each digit only once. What is the sum of the 4 prime numbers?

Key Concepts


Arithmetic

Divisibility

Prime Number

Suggested Book | Source | Answer


Elementary Number Theory by David M. Burton.

AMC 10A 2002 Problem 15

190

Try with Hints


First try to find the probable digits for the unit place of the prime number.

The two digit prime number should end with $1, 3, 7, 9$ since it is prime and should not divisible by $2$ or $5$.

So now try to find which two digit primes will work here.

So, the primes should be $23, 41, 59, 67$.

Now find the sum of them.

AMC - AIME Program at Cheenta

Subscribe to Cheenta at Youtube


AMC 10A 2020 Problem 6 | Divisibility Problem

Try this beautiful Problem based on Divisibility Problem from AMC 2020 Problem 6.

Divisibility Problem: AMC 10A 2020 Problem 6


How many 4-digit positive integers (that is, integers between 1000 and 9999 , inclusive) having only even digits are divisible by 5 ?

Key Concepts


Divisibility

Counting Principle

Suggested Book | Source | Answer


AMC 10A 2020 Problem 6

100

Try with Hints


What is the divisibility rule for a number divisible by 5?

Now apply this for unit, tens, hundred and thousand digits.

Here the unit digit must be 0. So I just have one choice for units place.

The middle two digits can be 0, 2, 4, 6, or 8.

But the thousands digit can only be 2, 4, 6, or 8 since it cannot be zero.

Now try to count how many choices are there for each position.

Then there was 1 choice for unit digit.

5 choices for middle two digits.

4 choices for thousands digit.

Now calculate the total number of choices you can make.

AMC-AIME Program at Cheenta

Subscribe to Cheenta at Youtube


AMC 10A 2021 Problem 22 | System of Equations

Try this beautiful Problem based on System of Equations from AMC 10A, 2021 Problem 22.

System of Equations | AMC 10A 2021, Problem 22


Hiram's algebra notes are 50 pages long and are printed on 25 sheets of paper; the first sheet contains pages 1 and 2 , the second sheet contains pages 3 and 4 , and so on. One day he leaves his notes on the table before leaving for lunch, and his roommate decides to borrow some pages from the middle of the notes. When Hiram comes back, he discovers that his roommate has taken a consecutive set of sheets from the notes and that the average (mean) of the page numbers on all remaining sheets is exactly 19 . How many sheets were borrowed?

Key Concepts


Arithmetic Sequence

System of Equations

Algebra

Suggested Book | Source | Answer


Problem-Solving Strategies by Arthur Engel

AMC 10A 2021 Problem 22

13

Try with Hints


Let us assume that the roommate took sheets $a$ through $b$.
So, try to think what will be the changes in the page number?

So, page numbers $2 a-1$ through $2 b$. Because there are $(2 b-2 a+2)$ numbers.

Now apply the condition given there.

So we get, $\frac{(2 a-1+2 b)(2 b-2 a+2)}{2}$+$19(50-(2 b-2 a+2))$=$\frac{50 \cdot 51}{2}$

Now simplify this expression.

So , $2 a+2 b-39=25, b-a+1=13$

Now solve for $a, b$.

Find the number of pages using the values.

AMC - AIME Program at Cheenta

Subscribe to Cheenta at Youtube


AMC 10A 2021 I Problem 20 | Enumeration

Try this beautiful Problem based on Enumeration appeared in AMC 10A 2021, Problem 20.

AMC 10A 2021 I Problem 20


In how many ways can the sequence $1$, $2$, $3$, $4$, $5$ be rearranged so that no three consecutive terms are increasing and no three consecutive terms are decreasing?

Key Concepts


Permutation

Enumeration

Combinatorics

Suggested Book | Source | Answer


An Excursion in Mathematics

AMC 10A 2021 Problem 20

32

Try with Hints


We have 5 numbers with us.

So, how many permutations we can have with those numbers?

So, $5!=120$ numbers can be made out of those $5$ numbers.

Now we have to remember that we are restricted with the following condition -

no three consecutive terms are increasing and no three consecutive terms are decreasing.

Now make a list of the numbers which are satisfying the condition given among all $120$ numbers we can have.

Now the list should be -

$13254$, $14253$, $14352$, $15243$, $15342$, $21435$, $21534$, $23154$, $24153$, $24351$, $25143$, $25341$
$31425$, $31524$, $32415$, $32514$, $34152$, $34251$, $35142$, $35241$, $41325$, $41523$, $42315$, $42513$,
$43512$, $45132$, $45231$, $51324$, $51423$, $52314$, $52413$, $53412$.

Count how many permutations are there?

Subscribe to Cheenta at Youtube


AMC 10A 2021 Problem 14 | Vieta's Formula

Try this beautiful Problem based on Vieta's Formula from AMC 10A, 2021 Problem 14.

Vieta's Formula | AMC 10A 2021, Problem 14


All the roots of the polynomial $z^{6}$-$10 z^{5}$+$A z^{4}$+$B z^{3}$+$C z^{2}$+$D z+16$ are positive integers, possibly repeated. What is the value of $B$ ?

Key Concepts


Vieta's Formula

Polynomial

Roots of the polynomial

Suggested Book | Source | Answer


Problem-Solving Strategies by Arthur Engel

AMC 10A 2021 Problem 14

-88

Try with Hints


Find out the degree of the given polynomial.

We know, Degree of polynomial= Number of roots of that polynomial.

Apply Vieta's Formula on the given polynomial.

By Vieta's Formula, the sum of the roots is 10 and product of the roots is 16.

Since there are 6 roots for this polynomial. By trial and check method find the roots.

The roots should be $2, 2, 2, 2, 1, 1$.

Now using the roots reconstruct the polynomial.

So the polynomial should be -

$(z-1)^{2}(z-2)^{4}$

$=(z^{2}-2 z+1)\\(z^{4}-8 z^{3}+24 z^{2}-32 z+16)$

Now equate it with the given polynomial to find the value of $B.$

AMC - AIME Program at Cheenta

Subscribe to Cheenta at Youtube