

CHEENTA

IOQM Concepts Revisited

Created By:
J V Raghunath

 $\begin{tabular}{ll} \textbf{Topic:} Linear \\ Congruences - CRT, FLT \\ \end{tabular}$

Overview

We will learn about,

- 1. Linear Congruences
- 2. System of Linear Congruences and CRT
- 3. Fermat's Little Theorem FLT

1 Linear Congruences

A Linear Congruence equation is of the form, $ax \equiv b \pmod{n}$, for $a, b, x \in \mathbb{Z}$ and $n \in \mathbb{N}$, where x is the variable. x_0 is a solution $\iff ax_0 \equiv b \pmod{n}$. We say that two solutions are "equal" if both are congruent \pmod{n} . For example, $3x \equiv 9 \pmod{12}$, has solutions, $x = \ldots, -5, -1, 3, 7, 11, 15, 19, \ldots$ But many of which are "equal" $\pmod{12}$, i.e., $-5 \equiv 7 \equiv 19 \pmod{12}$. So we say that the number of solutions to be the cardinality of set of all mutually incongruent solutions $\pmod{12}$, that is, $3x \equiv 9 \pmod{12}$, has 3 mutually incongruent solutions $\{3, 7, 11\} \pmod{12}$.

Theorem 1.1. The Linear Congruence $ax \equiv b \pmod{n}$ has a solution \iff $d \mid b$, where d = GCD(a, n). If $d \mid b$, then it has "d" mutually incongruent solutions (mod n).

Proof. If $ax \equiv b \pmod{n} \implies n \mid ax - b \implies b = ax - nk$, for some $k \in \mathbb{Z}$. Since GCD(a, n) divides both $a, n \implies GCD(a, n) \mid ax - nk \implies d \mid b$.

Conversely suppose if, $d \mid b \implies b = sd$, for some $s \in \mathbb{Z}$. From the *Bezout's Lemma* we know that, there exist $w, y \in \mathbb{Z}$, such that, $d = \text{GCD}(a, n) = aw + ny \implies sd = a(sw) + n(sy) \implies n \mid b - a(w_0)$, for some $w_0 \in \mathbb{Z}$. So $aw_0 \equiv b \pmod{n}$, and hence there is a solution for the linear congruence.

Now, suppose $d \mid b$, then $b = ax_0 - nk_0$, for some $x_0, k_0 \in \mathbb{Z}$ by the preceding argument. Let us say that there is another solution x_1 , so, $b = ax_1 - nk_1$, for some $x_1, k_1 \in \mathbb{Z}$. So, $ax_0 - nk_0 = ax_1 - nk_1 \implies a(x_0 - x_1) = n(k_0 - k_1)$. If $a = da_0, n = dn_0$, then $a_0(x_0 - x_1) = n_0(k_0 - k_1) \implies n_0 \mid a_0(x_0 - x_1)$. By the Euclid's Lemma, since $GCD(\frac{a}{d}, \frac{n}{d}) = 1 \implies n_0 \mid (x_0 - x_1) \implies x_0 \equiv x_1 \pmod{n_0}$. Also note that conversely, any $x \equiv x_0 \pmod{n_0}$, is a solution of the congruence because $n_0 \mid (x - x_0) \implies n \mid ax - ax_0 \implies ax \equiv ax_0 \equiv b \pmod{n}$. Hence, the set of solutions of the linear congruence $ax \equiv b \pmod{n}$ is the set $\{x \mid x \equiv x_0 \pmod{n_0}\}$. But to determine the number of solutions, we need the number of incongruent

solutions (mod n). We know that,

$$x = \dots, x_0, x_0 + \left(\frac{n}{d}\right), x_0 + 2\left(\frac{n}{d}\right), x_0 + 3\left(\frac{n}{d}\right), \dots, x_0 + (d-2)\left(\frac{n}{d}\right), x_0 + (d-1)\left(\frac{n}{d}\right), \dots$$

 $x_0 + n, x_0 + (d+1)\left(\frac{n}{d}\right), \dots, \text{ since } n_0 = \frac{n}{d}$

So observe that, there are exactly "d" solutions that are mutually incongruent (mod n), completing the proof.

Question 1.1. Find the solutions and the number of solutions of the linear congruence, $18x \equiv 30 \pmod{42}$

Sol. Note that d = GCD(18, 42) = 6; a = 18; $b = 30 \implies d \mid b$, so there is solution and the number of solutions = d = 6.

 $18x \equiv 30 \pmod{42} \implies 3x \equiv 5 \pmod{7} \implies 3x \equiv 12 \pmod{7} \implies x \equiv 4 \pmod{7}$, is the set of solutions.

Question 1.2. Find the solutions and the number of solutions of the linear congruence, $9x \equiv 21 \pmod{30}$

Sol. Note that d = GCD(9,30) = 3; a = 9; $b = 21 \implies d \mid b$, so there is solution and the number of solutions = d = 3.

 $9x \equiv 21 \pmod{30} \implies 3x \equiv 7 \pmod{10} \implies 3x \equiv -3 \pmod{10} \implies x \equiv 9 \pmod{10}$, is the set of solutions.

2 System of Linear Congruences and CRT

Instead of one congruence equation, suppose you are given with multiple, say r simultaneous system of congruence equations and we are interested to find the solutions and the number of solutions for it. Suppose the congruence equations are,

$$b_1 x \equiv c_1 \pmod{m_1}$$

$$b_2 x \equiv c_2 \pmod{m_2}$$

$$\vdots$$

$$b_r x \equiv c_r \pmod{m_r}$$

where m_1, m_2, \ldots, m_r are mutually coprime. Obviously, each of the congruence must hold true, otherwise there is no solution, and by the Theorem 1.1, we have $GCD(b_i, m_i) \mid c_i$, for each $i \in \{1, 2, \ldots, r\}$. If this is true, then we have solutions for

each congruence written as below,

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_r \pmod{n_r}$

where $n_i = \frac{m_i}{\text{GCD}(b_i, m_i)}$, which are also mutually co-prime $\forall i \in \{1, \dots, r\}$ since m_i 's are mutually coprime. Now we use the following *Chinese Remainder Theorem*, to understand more about this,

Theorem 2.1 (Chinese Remainder Theorem). Let $n_1, n_2, \ldots, n_r \in \mathbb{Z}$ such that $GCD(n_i, n_j) = 1$ for $i \neq j$. Then the system of linear congruences,

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \vdots
 $x \equiv a_r \pmod{n_r}$

has a simultaneous solution, which is unique modulo the integer $n_1n_2\cdots n_r$.

Proof. We start by forming the product $n = n_1 n_2 \cdots n_r$. For each $k = 1, 2, \dots, r$, let

$$N_k = \frac{n}{n_k} = n_1 \cdots n_{k-1} n_{k+1} \cdots n_r$$

In words, N_k is the product of all the integers n_i with the factor n_k omitted. By hypothesis, the n_i are relatively prime in pairs, so that $\gcd(N_k, n_k) = 1$. According to the theory of a single linear congruence, it is therefore possible to solve the congruence $N_k x \equiv 1 \pmod{n_k}$; call the unique solution x_k . Our aim is to prove that the integer

$$\bar{x} = a_1 N_1 x_1 + a_2 N_2 x_2 + \dots + a_r N_r x_r$$

is a simultaneous solution of the given system. First, observe that $N_i \equiv 0 \pmod{n_k}$ for $i \neq k$, because $n_k \mid N_i$ in this case. The result is

$$\bar{x} = a_1 N_1 x_1 + \dots + a_r N_r x_r \equiv a_k N_k x_k \pmod{n_k}$$

But the integer x_k was chosen to satisfy the congruence $N_k x \equiv 1 \pmod{n_k}$, which forces

$$\bar{x} \equiv a_k \cdot 1 \equiv a_k \pmod{n_k}$$

This shows that a solution to the given system of congruences exists. As for the uniqueness assertion, suppose that x' is any other integer that satisfies these congruences. Then

$$\bar{x} \equiv a_k \equiv x' \pmod{n_k} \qquad \forall k = 1, 2, \dots, r$$

and so $n_k \mid \bar{x} - x'$ for each value of k. Because $\gcd(n_i, n_j) = 1$, $\implies n_1 n_2 \cdots n_r \mid \bar{x} - x'$; hence $\bar{x} \equiv x' \pmod{n_k}$, completing the proof.

Question 2.1. Solve the linear congruence $17x \equiv 9 \pmod{276}$

Sol. $276 = 2^2 \times 3 \times 23$. So,

 $276 \mid 17x - 9 \iff 2^2 \mid 17x - 9 \text{ and } 3 \mid 17x - 9 \text{ and } 23 \mid 17x - 9, \text{ since these factors are relatively coprime. Hence, we just need to solve the simultaneous system of congruences,$

$$17x \equiv 9 \pmod{4}$$

$$17x \equiv 9 \pmod{3}$$

$$17x \equiv 9 \pmod{23}$$

Firstly, let us solve each of the congruences and after some calculations we get,

$$x \equiv 1 \pmod{4}$$

$$x \equiv 0 \pmod{3}$$

$$x \equiv 10 \pmod{23}$$

Now, we know by the *Chinese Remainder Theorem* that there is a unique solution (mod $276 = 4 \times 3 \times 23$). We just need to find this unique solution and we are done. For this, list down the numbers that are congruent to $10 \pmod{23}$ and < 276, that is, $10, 33, 56, 79, \ldots$ Out these numbers, exactly one satisfy the system of congruences which is 33. Hence $x \equiv 33 \pmod{276}$ is the set of solutions.

Question 2.2. Solve the following system of linear congruences,

 $x \equiv 2 \pmod{3}$

 $x \equiv 3 \pmod{5}$

 $x \equiv 2 \pmod{7}$

It is easily observed that $x \equiv 23 \pmod{105}$ is the solution. A rigorous solution would be to find the solution using the proof of the *Chinese Remainder Theorem*.

Remark. Think about the simultaneous system of congruences when the n_i 's are not mutually coprime. Under what conditions do they have solution(s) and how many solution(s)?

3 Fermat's Little Theorem - FLT

Theorem 3.1 (Fermat's Little Theorem). Let $a \in \mathbb{Z}$ and p be any prime number, then

$$a^p \equiv a \pmod{p}$$

Proof. We can use induction to prove it, i.e., $1^p \equiv 1 \pmod{p}$. Suppose, $a^p \equiv a \pmod{p}$, then $(a+1)^p = a^p + pk_1 + 1^p$, for some $k_1 \in \mathbb{Z}$, by the Binomial Theorem. Then, $(a+1)^p \equiv a^p + 1 \equiv a+1 \pmod{p}$, by the induction hypothesis. Hence, $a^p \equiv a \pmod{p}, \forall a \in \mathbb{Z}$ by the First principle of Finite Induction.

There is as well another elegant method, which states that if $GCD(a, p) \neq 1 \implies p \mid a \implies a^p \equiv 0 \equiv a \pmod{p}$. If GCD(a, p) = 1, then we can divide by a on both sides to get, $a^{p-1} \equiv 1 \pmod{p}$. Consider the set $\{a, 2 \cdot a, 3 \cdot a, \dots, (p-1) \cdot a\}$, which is special because none of them is divisible by p and no two of them are congruent \pmod{p} , because if $n_1 \cdot a \equiv n_2 \cdot a \pmod{p} \implies p \mid (n_1 - n_2)$, since GCD(a, p) = 1, but this not possible unless $n_1 = n_2$, because $n_i < p$. So, we can observe that the remainder set of $\{a, 2 \cdot a, 3 \cdot a, \dots, (p-1) \cdot a\}$ must be $\{1, 2, 3, \dots, p-1\}$, in some order. Hence, $(a) \cdot (2a) \cdot (3a) \cdot \cdots ((p-1)a) \equiv 1 \cdot 2 \cdot 3 \cdots (p-1) \pmod{p} \implies (p-1)! \cdot a^{p-1} \equiv (p-1)! \pmod{p} \implies a^{p-1} \equiv 1 \pmod{p}$.

Question 3.1. Prove that 17 divides $11^{104} + 1$ Sol. $11^{17} \equiv 11 \pmod{17}$, by the Fermat's Little Theorem. So, $(11^{17})^5 \equiv 11^5 \pmod{17} \implies 11^{105} \equiv 11^5 \pmod{17} \implies 11^{104} \equiv 11^4 \equiv (-6)^4 \equiv 36^2 \equiv 4^2 \equiv -1 \pmod{17}$. Hence $17 \mid 11^{104} + 1$

One can also use the *Fermat's Little Theorem* to prove that a number is not a prime. For example, Let us prove that 117 is not a prime,

$$2^{117} = 2^{7 \cdot 16 + 5} = \left(2^7\right)^{16} 2^5$$

and $2^7 = 128 \equiv 11 \pmod{117}$, we have

$$2^{117} \equiv 11^{16} \cdot 2^5 \equiv (121)^8 2^5 \equiv 4^8 \cdot 2^5 \equiv 2^{21} \pmod{117}$$

But $2^{21} = (2^7)^3$, which leads to

$$2^{21} \equiv 11^3 \equiv 121 \cdot 11 \equiv 4 \cdot 11 \equiv 44 \pmod{117}$$

Combining these congruences, we finally obtain

$$2^{117} \equiv 44 \not\equiv 2 \pmod{117}$$

So, 117 doesnot follow the *Fermat's Little Theorem* and hence it cannot be a prime. Actually, $117 = 3^2 \times 13$.