

CHEENTA

IOQM Concepts Revisited

Created By: J V Raghunath

Topic : Basics of Congruences and its Properties

Overview

We will learn about,

- 1. Basics of Congruences
- 2. Properties of Congruences
- 3. Problems involving Congruences

1 Basics of Congruences

For a fixed positive integer n and $a, b \in \mathbb{Z}$, we say a and b are congrunt modulo n, i.e.,

$$a \equiv b \pmod{n} \iff n \mid (a - b)$$

that is, if and only if a - b = kn, for some $k \in \mathbb{Z}$.

For example, $5 \equiv 40 \pmod{7}$, $4 \equiv 40 \pmod{6}$, $26 \not\equiv 11 \pmod{7}$.

Lemma 1.1. Given $n \in \mathbb{N}$, then any integer is congruent to its remainder when divided by n and not to any other non-negative number less than n, when considered under (mod n).

Proof. Given $a, n \in \mathbb{Z}$, by the *Division Algorithm*, there exist $q, r \in \mathbb{Z}$, such that,

$$a = nq + r$$
, where $0 \le r < n$

 $\implies n \mid (a-r) \implies a \equiv r \pmod{n}$, where r is the remainder when a is divided by n. To prove the uniqueness of the value of r < n, suppose consider $a \equiv r_1 \pmod{n}$, for some $0 \le r_1 < n$

$$\implies n \mid (a - r_1) \implies a - r_1 = nq_1$$
, for some $q_1 \in \mathbb{Z} \implies a = nq_1 + r_1$

But by the *Division Algorithm*, we know that such a value of r_1 is unique which is the remainder of a when divided by $n \implies r_1 = r$. Hence proved

So, any integer is congruent (mod n) to exactly one of $\{0, 1, 2, \ldots, n-1\}$.

- The set of n integers $\{0, 1, 2, ..., n-1\}$ is called as the set of least non-negative residues modulo n.
- The set of n integers which is congruent to $\{0, 1, 2, ..., n-1\}$ in some order is called a *complete set of residues modulo* n. For example, $\{-2, -8, 13, 7\}$ forms a complete set of residues modulo 4, because it is congruent to $\{2, 0, 1, 3\}$ in the same order which is nothing but $\{0, 1, 2, 3\}$.

Theorem 1.1. For any $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}$,

 $a \equiv b \pmod{n} \iff a \text{ and } b \text{ leave the same remainder when divided by "n"}.$

Proof. Suppose, $a \equiv b \pmod{n} \implies a - b = kn$, for some $k \in \mathbb{Z} \implies a = kn + b$. By the Division Algorithm, b = qn + r, where r is the remainder when b is divided by $n \implies a = (k+q)n + r$, hence again by the Division Algorithm, since the remainder must be unique, r is also the remainder when a is divided by n. Hence, a and b leave the same remainder when divided by "n".

Conversely, suppose a and b leave the same remainder when divided by "n", say r. Then by the Division Algorithm, $a = q_1 n + r$; $b = q_2 n + r \implies a - b = (q_1 - q_2)n \implies n \mid (a - b) \implies a \equiv b \pmod{n}$.

2 Properties of Congruences

Here $a, b, c, d \in \mathbb{Z}$ and $n, k \in \mathbb{N}$,

- $a \equiv a \pmod{n}$ [Reflexivity]
- $a \equiv b \pmod{n} \iff b \equiv a \pmod{n}$ [Symmetry]
- If $a \equiv b$ and $b \equiv c \implies a \equiv c \pmod{n}$ [Transitivity]
- If $a \equiv b$ and $c \equiv d \implies a + c \equiv b + d \pmod{n}$ [Addition]
- If $a \equiv b$ and $c \equiv d \implies ac \equiv bd \pmod{n}$ [Multiplication]

Proof. So we have, $a-b=nk_1$; $c-d=nk_2$. Multiply by "c" in the first equation and by "b" in the second equation and add the both to get, $ac-bd=n(ck_1+bk_2) \implies n \mid (ac-bd) \implies ac \equiv bd \pmod{n}$

• If $a \equiv b \pmod{n} \implies a^k \equiv b^k \pmod{n}$. The converse is NOT TRUE

Proof. Obviously, $a^1 \equiv b^1 \pmod{n}$ which is given. Suppose,

$$a^{m-1} \equiv b^{m-1} \pmod{n} \implies a^{m-1} \cdot a \equiv b^{m-1} \cdot b \pmod{n} \ (\because a \equiv b)$$

 $\implies a^m \equiv b^m \pmod{n}.$

Hence, by the First Principle of Finite Induction, $a^k \equiv b^k, \forall k \in \mathbb{N}$. The converse is not true because there are many counter examples such as, $2^2 \equiv 8^2 \pmod{4}$, but $2 \not\equiv 8 \pmod{4}$.

• For
$$c \neq 0$$
, $ca \equiv cb \pmod{n} \iff a \equiv b \pmod{\frac{n}{GCD(c,n)}}$

Proof. Suppose, $ca \equiv cb \pmod{n} \implies n \mid c(a-b)$.

Let $GCD(c, n) = d \implies GCD(\frac{c}{d}, \frac{n}{d}) = 1$.

Then $\frac{n}{d} \mid \frac{c}{d}(a-b)$, but since $\frac{c}{d}$ and $\frac{n}{d}$ are relatively prime, by the *Euclid's Lemma*, $\frac{n}{d} \mid (a-b) \implies a \equiv b \pmod{\frac{n}{d}}$.

Conversely, suppose that,

$$a \equiv b \pmod{\frac{n}{\text{GCD}(c,n)}}$$

$$\implies \frac{n}{\text{GCD}(c,n)} \mid (a-b)$$

$$\implies n \mid \text{GCD}(c,n)(a-b)$$

$$\implies n \mid c(a-b) \text{ (Since } c \text{ is a multiple of GCD}(c,n))}$$

$$\implies ca \equiv cb \pmod{n}$$

3 Problems involving Congruences

Question 3.1. Let n be a positive integer and let $a_1, a_2, a_3, \ldots, a_k$ (here $k \geq 2$) be distinct integers in the set $\{1, 2, \ldots, n\}$ such that n divides $a_i (a_{i+1} - 1)$ for $i = 1, 2, \ldots, k - 1$. Prove that n does not divide $a_k (a_1 - 1)$.

Sol. Let us say for the sake of contradiction that $n \mid a_k (a_1 - 1)$, then

$$n \mid a_1(a_2 - 1) \iff a_1 a_2 \equiv a_1 \pmod{n} \tag{3.1}$$

$$n \mid a_2(a_3 - 1) \iff a_2 a_3 \equiv a_2 \pmod{n} \tag{3.2}$$

$$n \mid a_3(a_4 - 1) \iff a_3 a_4 \equiv a_3 \pmod{n} \tag{3.3}$$

•

 $n \mid a_{k-1}(a_k - 1) \iff a_{k-1}a_k \equiv a_{k-1} \pmod{n} \tag{3.4}$

$$n \mid a_k(a_1 - 1) \iff a_k a_1 \equiv a_k \pmod{n}$$
 (3.5)

Note that, we should not cancel $a_i's$ from the modular equations because by the last property the (mod n) will change to (mod $\frac{n}{\text{GCD}(a_i,n)}$).

Please Turn Over...

Solution Continued...

Let us start from the congruence equation in 3.1. Substitute Equation 3.2 in the Equation 3.1, to get $a_1a_2a_3 \equiv a_1 \pmod{n}$. Now substitute Equation 3.3 in the above Equation to get $a_1a_2a_3a_4 \equiv a_1$. If we continue to substitute all the equations till the Equation 3.4, we get that $a_1a_2a_3 \cdots a_k \equiv a_1 \pmod{n}$.

Similarly, if we start from the congruence equation in 3.2 and substitute Equation 3.3, we get $a_2a_3a_4 \equiv a_2 \pmod{n}$. Upon continuing the substitution till the Equation 3.5, we get $a_2a_3\cdots a_ka_1 \equiv a_2 \pmod{n}$.

From the above two paragraphs, we conclude that $a_1 \equiv a_1 a_2 a_3 \cdots a_k \equiv a_2 \pmod{n} \Rightarrow a_1 \equiv a_2 \pmod{n}$. But this is a contradiction, because a_1, a_2 are distinct elements of $\{1, 2, \dots, n\}$ and hence cannot be congruent to each other as they should leave distinct remainders when divided by n.

Question 3.2. Find the remainder obtained upon dividing the sum

$$1! + 2! + 3! + 4! + \cdots + 99! + 100!$$

by 12.

Question 3.3. Prove that 41 divides $2^{20} - 1$. [*Hint* : $2^{10} \equiv -1 \pmod{41}$]

Question 3.4. Prove that $43 \mid 6^{n+2} + 7^{2n+1}$. Sol. $7^2 \equiv 6 \pmod{43} \implies 7^{2n} \equiv 6^n \pmod{43}$ and $-7 \equiv 6^2 \pmod{43}$. Multiplying the above two equations, we get $-7^{2n+1} \equiv 6^{n+2} \pmod{43}$. $\implies 43 \mid 6^{n+2} + 7^{2n+1}$

Question 3.5. Prove that $1^n + 2^n + \cdots + (n-1)^n$ is divisible by n for odd n.

Question 3.6. Prove that 10^{3n+1} cannot be represented as a sum of the cubes of two integers.

 $[Hint: Go \pmod{7}]$

Remark. Work out to find that the remainders of squares (mod 3); cubes (mod 7); 5^{th} power (mod 11); 6^{th} power (mod 13); etc, can only be 0 (or) \pm 1! Think about the reason behind it.