ISI MStat 2020 PSB Problem 8 Solution

ISI MStat 2020 PSB Problem 8 Solution

Problem

Assume that $X_{1}, \ldots, X_{n}$ is a random sample from $N(\mu, 1)$, with $\mu \in \mathbb{R}$. We want to test $H_{0}: \mu=0$ against $H_{1}: \mu=1$. For a fixed integer $m \in{1, \ldots, n}$, the following statistics are defined:

$\begin{aligned} T_{1} &= \frac{\left(X_{1}+\ldots+X_{m}\right)}{m} \\ T_{2} &= \frac{\left(X_{2}+\ldots+X_{m+1}\right)} {m} \\ \vdots &=\vdots \\ T_{n-m+1} &= \frac{\left(X_{n-m+1}+\ldots+X_{n}\right)}{m} . \end{aligned}$

Fix $\alpha \in(0,1)$.

Consider the test

Reject $H_{0}$ if $\max \{T_{i}: 1 \leq i \leq n-m+1\}>c_{m, \alpha}$


Find a choice of $c_{m, \alpha} \in \mathbb{R}$ in terms of the standard normal distribution function $\Phi$ that ensures that the size of the test is at most $\alpha$.

Hint 1

Show that the problem is equivalent to finding that $P_{\mu = 0}(\max \{T_{i}: 1 \leq i \leq n-m+1\}\\>c_{m, \alpha}) \leq \alpha$

Hint 2

$P_{\mu = 0}(\max \{T_{i}: 1 \leq i \leq n-m+1\}\\>c_{m, \alpha})$

$= P_{\mu = 0}( T_1 > c_{m, \alpha} \cup T_2 > c_{m, \alpha} \cdots T_{n-m+1}\\ > c_{m, \alpha})$

Hint 3

Use Boole's Inequality o get

$P_{\mu = 0}( T_1 > c_{m, \alpha} \cup T_2 > c_{m, \alpha} \cdots T_{n-m+1}\\ > c_{m, \alpha}) \leq \sum_{i = 1}^{n-m+1} P(T_i > c_{m, \alpha}) = \alpha $

Hint 4

Show that under $H_0$, $T_i$ ~ $N(0,\frac{1}{m})$. Hence, find $c_{m, \alpha}$

See the full solution below.

Full Solution

Food For Thoughts

IIT JAM MS 2020 Section A Problem 1 Solution

IIT JAM MS 2020 Section A Problem 1 Solution

Problem

If $\{x_{n}\}_{n \geq 1}$ is a sequence of real numbers such that $\lim _{n \rightarrow \infty} \frac{x_{n}}{n}=0.001$, then

(A) $\{x_{n}\}_{n \geq 1}$ is a bounded sequence
(B)$\{x_{n}\}_{n \geq 1}$ is an unbounded sequence
(C) $\{x_{n}\}_{n \geq 1}$ is a convergent sequence
(D) $\{x_{n}\}_{n \geq 1}$ is a monotonically decreasing sequence

Hints

Hint 1

If $\{x_{n}\}_{n \geq 1}$ was bounded, show that $\lim _{n \rightarrow \infty} \frac{x_{n}}{n}=0$, by sandwich theorem.

Hint 2

If $\{x_{n}\}_{n \geq 1}$ was convergent, show that $\lim _{n \rightarrow \infty} \frac{x_{n}}{n}=0$, by algebra of limits.

Hint 3

If $\{x_{n}\}_{n \geq 1}$ was motonotically decreasing and bounded below, then it would have been convergent by Monotone Convergence Theorem.

Let's consider if it is not below below, i.e. $\lim _{n \rightarrow \infty} {x_{n}} = -\infty $

Find the limit in each of this case.

Hence, it will be unbounded. See the full solution and proof idea below.

Full Solution

Food For Thoughts

ISI MStat PSB 2009 Problem 3 | Gamma is not abNormal

This is a very simple but beautiful sample problem from ISI MStat PSB 2009 Problem 3. It is based on recognizing density function and then using CLT. Try it !

Problem- ISI MStat PSB 2009 Problem 3


Using and appropriate probability distribution or otherwise show that,

\( \lim\limits_{x\to\infty}\int^n_0 \frac{exp(-x)x^{n-1}}{(n-1)!}\,dx =\frac{1}{2}\).

Prerequisites


Gamma Distribution

Central Limit Theorem

Normal Distribution

Solution :

Here all we need is to recognize the structure of the integrand. Look, that here, the integrand is integrated over the non-negative real numbers. Now, event though here it is not mentioned explicitly that \(x\) is a random variable, we can assume \(x\) to be some value taken by a random variable \(X\). After all we can find randomness anywhere and everywhere !!

Now observe that the integrand has a structure which is very identical to the density function of gamma random variable with parameters \(1\) ande \(n\). So, if we assume that \(X\) is a \(Gamma(1, n)\), then our limiting integral transforms to,

\(\lim\limits_{x\to\infty}P(X \le n)\).

Now, we know that if \(X \sim Gamma(1,n)\), then its mean and variance both are \(n\).

So, as \(n \uparrow \infty\), \(\frac{X-n}{\sqrt{n}} \to N(0,1)\), by Central Limit Theorem.

Hence, \(\lim\limits_{x\to\infty}P(X \le n)=\lim\limits_{x\to\infty}P(\frac{X-n}{\sqrt{n}} \le 0)=\lim\limits_{x\to\infty}\Phi (0)=\frac{1}{2}\). [ here \(\Phi(z)\) is the cdf of Normal at \(z\).]

Hence proved !!


Food For Thought

Can, you do the proof under the "Otherwise" condition !!

Give it a try !!


Similar Problems and Solutions



ISI MStat PSB 2008 Problem 10
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


ISI MStat PSB 2006 Problem 2 | Cauchy & Schwarz come to rescue

This is a very subtle sample problem from ISI MStat PSB 2006 Problem 2. After seeing this problem, one may think of using Lagrange Multipliers, but one can just find easier and beautiful way, if one is really keen to find one. Can you!

Problem- ISI MStat PSB 2006 Problem 2


Maximize \(x+y\) subject to the condition that \(2x^2+3y^2 \le 1\).

Prerequisites


Cauchy-Schwarz Inequality

Tangent-Normal

Conic section

Solution :

This is a beautiful problem, but only if one notices the trick, or else things gets ugly.

Now we need to find the maximum of \(x+y\) when it is given that \(2x^2+3y^2 \le 1\). Seeing the given condition we always think of using Lagrange Multipliers, but I find that thing very nasty, and always find ways to avoid it.

So let's recall the famous Cauchy-Schwarz Inequality, \((ab+cd)^2 \le (a^2+c^2)(b^2+d^2)\).

Now, lets take \(a=\sqrt{2}x ; b=\frac{1}{\sqrt{2}} ; c= \sqrt{3}y ; d= \frac{1}{\sqrt{3}} \), and observe our inequality reduces to,

\((x+y)^2 \le (2x^2+3y^2)(\frac{1}{2}+\frac{1}{3}) \le (\frac{1}{2}+\frac{1}{3})=\frac{5}{6} \Rightarrow x+y \le \sqrt{\frac{5}{6}}\). Hence the maximum of \(x+y\) with respect to the given condition \(2x^2+3y^2 \le 1\) is \(\frac{5}{6}\). Hence we got what we want without even doing any nasty calculations.

Another nice approach for doing this problem is looking through the pictures. Given the condition \(2x^2+3y^2 \le 1\) represents a disc whose shape is elliptical, and \(x+y=k\) is a family of straight parallel lines passing passing through that disc.

The disc and the line with maximum intercept.

Hence the line with the maximum intercept among all the lines passing through the given disc represents the maximized value of \(x+y\). So, basically if a line of form \(x+y=k_o\) (say), is a tangent to the disc, then it will basically represent the line with maximum intercept from the mentioned family of line. So, we just need to find the point on the boundary of the disc, where the line of form \(x+y=k_o\) touches as a tangent. Can you finish the rest and verify weather the maximum intercept .i.e. \(k_o= \sqrt{\frac{5}{6}}\) or not.


Food For Thought

Can you show another alternate solution to this problem ? No, Lagrange Multiplier Please !! How would you like to find out the point of tangency if the disc was circular ? Show us the solution we will post them in the comment.

Keep thinking !!


Similar Problems and Solutions



ISI MStat PSB 2008 Problem 10
Outstanding Statistics Program with Applications

Outstanding Statistics Program with Applications

Subscribe to Cheenta at Youtube


Problem on Integral Inequality | ISI - MSQMS - B, 2015

Try this problem from ISI-MSQMS 2015 which involves the concept of Integral Inequality.

INTEGRAL INEQUALITY | ISI 2015 | MSQMS | PART B | PROBLEM 7b


Show that $1<\int_{0}^{1} e^{x^{2}} d x<e$

Key Concepts


Real Analysis

Inequality

Numbers

Check The Answer


ISI - MSQMS - B, 2015, Problem 7b

"INEQUALITIES: AN APPROACH THROUGH PROBLEMS BY BJ VENKATACHALA"

Try with Hints


We have to show that ,

$1<\int_{0}^{1} e^{x^{2}} d x<e$

$ 0< x <1$

It implies, $0 < x^2 <1$

Now with this reduced form of the equation why don't you give it a try yourself, I am sure you can do it.

Thus, $ e^0 < e^{x^2} <e^1 $

i.e $1 < e^{x^2} <e $

So you are just one step away from solving your problem, go on.............

Therefore, Integrating the inequality with limits $0$ to $1$ we get, $\int\limits_0^1 \mathrm dx < \int\limits_0^1 e^{x^2} \mathrm dx < \int\limits_0^1e \mathrm dx$

Subscribe to Cheenta at Youtube


Geometric Sequence Problem | AIME I, 2009 | Question 1

Try this beautiful problem from American Invitational Mathematics Examination I, AIME I, 2009 based on geometric sequence.

Geometric Sequence Problem - AIME 2009


Call a 3-digit number geometric if it has 3 distinct digits which, when read from left to right, form a geometric sequence. Find the difference between the largest and smallest geometric numbers.

  • is 500
  • is 250
  • is 840
  • cannot be determined from the given information

Key Concepts


Sequence

Series

Real Analysis

Check the Answer


Answer: is 840.

AIME, 2009

Introduction to Real Analysis, 4th Edition  by Robert G. Bartle, Donald R. Sherbert

Try with Hints


3-digit sequence a, ar, \(ar^{2}\). The largest geometric number must have a<=9.

ar \(ar^{2}\) less than 9 r fraction less than 1 For a=9 is \(\frac{2}{3}\) then number 964.

a>=1 ar and \(ar^{2}\) greater than 1 r is 2 and number is 124. Then difference 964-124=840.

Subscribe to Cheenta at Youtube


Definite Integral Problem | ISI 2018 | MSQMS- A | Problem 22

Try this problem from ISI-MSQMS 2018 which involves the concept of Real numbers, sequence and series and Definite integral.

DEFINITE INTEGRAL | ISI 2018| MSQMS | PART A | PROBLEM 22


Let $I=\int_{0}^{1} \frac{\sin x}{\sqrt{x}} d x$ and $J=\int_{0}^{1} \frac{\cos x}{\sqrt{x}} d x,$ then which of the following is
true?

Key Concepts


REAL NUMBERS

REIMANN INTEGRATION

SEQUENCE AND SERIES

Check the Answer


Answer:(d) $I<\frac{2}{3}$ and $J<2$

ISI 2018|MSQMS |QMA|PROBLEM 22

INTRODUCTION TO REAL ANALYSIS :BARTLE SHERBERT

Try with Hints


We know when $f(x)$>$g(x)$

$\int \limits_a^bf(x)$>$\int \limits_a^bg(x)$

We know for $0<x<1$, $ \cos x <1 $

$ \frac{\cos x}{\sqrt x}$< $\frac{1}{\sqrt x}$ implies $\int \limits_0^1\frac{\cos x}{\sqrt x}\mathrm dx$<$\int \limits_0^1\frac{1}{\sqrt x}\mathrm dx $

$\int \limits_0^1\frac{1}{\sqrt x}\mathrm dx = 2$

$\int \limits_0^1\frac{\cos x}{\sqrt x}\mathrm dx $<$2$

$J$<$2$

Again we claim $x-s\sin x$>$0$ for $0 \leq x\leq 1$

Let $f(x)=x-\sin x$

$f'(x)=1-\cos x\geq 0$

hence $f(x)$ is monotonic increasing.

Therefore $x-\sin x $> $0$, $x\epsilon [0,1]$

So,$x$>$sinx$

$\sqrt x$ > $\frac{\sin x}{\sqrt x}$ $x\epsilon [0,1]$

integrating both sides with limits $0$ to $1$ we get;

$\int \limits_0^1\frac{\sin x}{\sqrt x} \mathrm dx $<$\frac{2}{3}$

$I$<$\frac{2}{3}$

Therefore,$I<\frac{2}{3}$ and $J<2$

Subscribe to Cheenta at Youtube


REAL ANALYSIS PROBLEM | TIFR A 201O | PROBLEM 5

Try this problem of TIFR GS-2010 from Real analysis, Differentiantiation and Maxima and Minima.

REAL ANALYSIS | TIFR 201O| PART A | PROBLEM 5


The maximum value of $f(x)=x^n(1-x)^n$ for natural number $n\geq 1$ and $0\leq x\leq1$

  • $\frac{1}{2^n}$
  • $\frac{1}{3^n}$
  • $\frac{1}{5^n}$
  • $\frac{1}{4^n}$

Key Concepts


REAL ANALYSIS

MAXIMA AND MINIMA

DIFFERENTIATION

Check the Answer


Answer:$\frac{1}{4^n}$

TIFR 2010|PART A |PROBLEM 1

AN INTRODUCTION TO ANALYSIS DIFFERENTIAL CALCULUS PART-I RK GHOSH, KC MAITY

Try with Hints


Here first differentiate $f(x)$

Then equate the terms of $f'(x)$ containing $x$ to $0$ and find all possible values of $x$,since your answer is in terms of $n$ no need to perform any kind of operations on $n$

Now equating $x$ we get $x=0,\frac{1}{2},1$

Now put each of these values of $x$ in $f(x)$ and see for which value of $x$ you get the maximum value of $f(x)$

you will get the maximum value of $f(x)$ for $x=\frac{1}{2}$ that is $\frac{1}{4^n}$

Subscribe to Cheenta at Youtube


Partial Differentiation | IIT JAM 2017 | Problem 5

Try this problem from IIT JAM 2017 exam (Problem 5) based on Partial Differentiation. It deals with calculating the partial derivative of a multi-variable function.

Partial Differentiation | IIT JAM 2017 | Problem 5


Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function. If $g(u, v)=f\left(u^{2}-v^{2}\right),$ then
$\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial v^{2}}=$

  • $4\left(u^{2}-v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
  • $4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
  • $2 f^{\prime}\left(u^{2}-v^{2}\right)+4\left(u^{2}-v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$
  • $2(u-v)^{2} f^{\prime \prime}\left(u^{2}-v^{2}\right)$

Key Concepts


Real Analysis

Function of Multi-variable

Partial Differentiation

Check the Answer


Answer: $4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)$

IIT JAM 2017, Problem 5

Real Analysis : Robert G. Bartle

Try with Hints


Here $g$ is a function of $u$ and $v$, to calculate $\frac{\partial g}{\partial u}$ we will differentiate the function $g$ with respect to $u$ keeping $v$ as constant.

and to calculate $\frac{\partial g}{\partial v}$ we will differentiate the function $g$ with respect to $v$ keeping $u$ as constant.

and $\frac{\partial^2 g}{\partial u^2}= \frac{\partial }{\partial u} [ \frac{\partial g}{\partial u} ]$

Hmm... I think you can easily do it from here ........

$\begin{aligned}\frac{\partial^{2} g}{\partial u^{2}}=\frac{\partial}{\partial u}\left(\frac{\partial u}{\partial u}\right) &=\frac{\partial}{\partial u}\left[f^{\prime}\left(v^{2}-v^{2}\right) \cdot 2 u\right] \\&=2 u \cdot f^{\prime \prime}\left(v^{2}-v^{2}\right) \cdot 2 u+f^{\prime}\left(v^{2}-v^{2}\right) \cdot 2 \\&=4 u^{2} f^{\prime \prime}\left(v^{2}-v^{2}\right)+2 f^{\prime}\left(v^{2}-v^{2}\right)\ldots\ldots(i)\end{aligned}$

Similarly,

$\begin{aligned}\frac{\partial^{2} g}{\partial v^{2}}=\frac{\partial}{\partial v}\left(\frac{\partial g}{\partial v}\right) &=\frac{\partial}{\partial v}\left[f^{\prime}\left(v^{2}-v^{2}\right) \cdot (-2 v)\right] \\&=(-2 v) \cdot f^{\prime \prime}\left(v^{2}-v^{2}\right) \cdot (-2 v)+f^{\prime}\left(v^{2}-v^{2}\right) \cdot (-2) \\&=(4 v^{2}) f^{\prime \prime}\left(v^{2}-v^{2}\right)-2 f^{\prime}\left(v^{2}-v^{2}\right) \ldots\ldots(ii) \end{aligned}$

Adding $(i)$ and (ii) we get,

$\frac{\partial^{2} g}{\partial u^{2}}+\frac{\partial^{2} g}{\partial x^{2}}$

$=4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right)+2 f^{\prime}\left(u^{2}-v^{2}\right)-2 f^{\prime}\left(u^{2}-v^{2}\right)$

$=4\left(u^{2}+v^{2}\right) f^{\prime \prime}\left(u^{2}-v^{2}\right) \textbf{[Ans]}$

Subscribe to Cheenta at Youtube


Rolle's Theorem | IIT JAM 2017 | Problem 10

Try this problem from IIT JAM 2017 exam (Problem 10).This problem needs the concept of Rolle's Theorem.

Rolle's Theorem | IIT JAM 2017 | Problem 10


$$f(x)=\left\{\begin{array}{ll}1+x & \text { if } x<0 \\ (1-x)(p x+q) & \text { if } x \geq 0\end{array}\right.$$

satisfies the assumptions of Rolle's theorem in the interval $[-1,1],$ then the ordered pair $(p, q)$ is

  • $(2,-1)$
  • $(-2,-1)$
  • $(-2,1)$
  • $(2,1)$

Key Concepts


Real Analysis

Continuity / Differentiability

 Mean-value theorem of differential calculus

Check the Answer


Answer: $(2,1)$

IIT JAM 2017 , Problem 10

Real Analysis : Robert G. Bartle

Try with Hints


Rolle's Theorem :

Let a function $f:[a, b] \rightarrow R$ be such that

  1. $f$ is continuous on $[a, b]$
  2. $f$ is differentiable at every point of $(a, b)$
  3. $f(a)=f(b)$

Then there exists at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$

We can easily see that $3^{rd}$ assumption of Rolle's theorem is satisfied for $f(x)$ irrespective of the values of $p,q$.

Since $f(-1)=0=f(1)\quad \forall p,q$

Since $f(x)$ satisfies $1^{st}$ assumption, then

$\begin{aligned}& \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)\\&\text { ie, } \lim _{x \rightarrow 0^{-}}(1+x)=\lim _{x \rightarrow 0^{+}}(1-x)(px+q)=q\\&\Rightarrow 1=q\end{aligned}$

$L f^{\prime}(0)=R f^{\prime}(0) \cdots \cdots(*)$

$\begin{aligned} \text{Now, } L f^{\prime}(0) &=\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h} \\&=\lim _{h \rightarrow 0^{-}} \frac{(1+h)-q}{h} \\ &=\lim _{h \rightarrow 0^{-}} \frac{1+h-1}{h}[\text{because } q=1] \\&=\lim_{h \to 0^{-}} \frac hh\\&=1\end{aligned}$

$\begin{aligned}\text{and, } R f^{\prime}(0)&=\displaystyle\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}\\&=\lim _{h \rightarrow 0^{+}} \frac{(1-h)\left(ph+q\right)-q}{h}\\&=\lim _{h \rightarrow 0^{+}} \frac{(1-h)(ph +1)-1}{h}\quad[\text{because } q=1]\\&=\lim _{h \rightarrow 0^{+}}\frac{ph+1- ph^{2}-h-1}{h}\\&=\lim _{h \rightarrow 0^{+}} \frac{h(p-ph-1)}{h}\\&=\lim_{h \ to 0^{+}} (p-ph-1)\\&=p-1\end{aligned}$

Then by $(*) \text{we have}, \quad P-1=1 \Rightarrow P=2$

Then order pair $(p,q)\equiv (2,1)$ [ANS]

Subscribe to Cheenta at Youtube